Classification of EEG signals for epileptic seizure prediction using ANN

Dublin Core

Title

Classification of EEG signals for epileptic seizure prediction using ANN

Author

Kevric, Jasmin
Subasi, Abdulhamit

Abstract

In this paper, we developed a model for classification of EEG signals. The aim of the study is to determine whether this model can be used for epileptic seizure prediction if “pre-ictal” stages were successfully detected. We analyzed long-term Freiburg EEG data. Each of 21 patients contains datasets called “ictal” (seizure) and “inter-ictal” (seizure-free). We extracted 4096-samples (or 16 seconds) long segments from both datasets of each patient. These segments were decomposed into time-frequency representations using Discrete Wavelet Transform (DWT). The statistical features from the DWT sub-bands of EEG segments were calculated and fed as inputs to Multilayer Perceptron (MLP) and Radial Basis Function (RBF) network classifiers using 10-fold cross validation. We also applied multiscale PCA (MSPCA) de-noising method to determine if it can further enhance the classifiers’ performance. MLP-based approach outperformed RBF classifier with or without MSPCA, which significantly improved the classification accuracy of both classifiers. The proposed MLP-approach with MSPCAachieved a classification accuracy of 95.09%. We showed that a high classification accuracy of EEG signals can be accomplished in cases when additional “pre-ictal” class is introduced. Therefore, the proposed approach may become an efficient tool to predict epileptic seizures from EEG recordings. Keywords: Electroencephalogram (EEG); Epileptic seizure; Discrete Wavelet Transform (DWT); Multilayer Perceptron (MLP); Radial Basis Function (RBF) network; Multiscale PCA (MSPCA); Machine learning.

Keywords

Conference or Workshop Item
PeerReviewed

Date

2012-05-31

Extent

1208

Document Viewer