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Abstract  

In this paper, we developed a model for classification of EEG signals. The aim of the study is 

to determine whether this model can be used for epileptic seizure prediction if “pre-ictal” 

stages were successfully detected. We analyzed long-term Freiburg EEG data. Each of 21 

patients contains datasets called “ictal” (seizure) and “inter-ictal” (seizure-free). We extracted 

4096-samples (or 16 seconds) long segments from both datasets of each patient. These 

segments were decomposed into time-frequency representations using Discrete Wavelet 

Transform (DWT). The statistical features from the DWT sub-bands of EEG segments were 

calculated and fed as inputs to Multilayer Perceptron (MLP) and Radial Basis Function 

(RBF) network classifiers using 10-fold cross validation. We also applied multiscale PCA 

(MSPCA) de-noising method to determine if it can further enhance the classifiers’ 

performance. MLP-based approach outperformed RBF classifier with or without MSPCA, 

which significantly improved the classification accuracy of both classifiers. The proposed 

MLP-approach with MSPCAachieved a classification accuracy of 95.09%. We showed that a 

high classification accuracy of EEG signals can be accomplished in cases when additional 

“pre-ictal” class is introduced. Therefore, the proposed approach may become an efficient 

tool to predict epileptic seizures from EEG recordings. 
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1.INTRODUCTION 

Noninvasive electrodes on the scalp can record the brain's electrical activity called as 

electroencephalogram (EEG), produced by billions of neurons firing within the nervous 

system. The EEG signal is characterized by a nonstationarity in the waveforms and 

semistationary time-dependent states, and detection of these characteristics is a difficult task 

(Bigan, 1998). Over 50 million people in the world are affected by the epilepsy, the second 

mostcommon neurological disorder after stroke (D’Alessandro et al., 2003). Abnormal 

movements and seizures, resulting from the brain cells' excessive electrical discharge, are the 

signs of epilepsy. 

One of the most important causes of stress, morbidness and anxiety in epileptic patients is the 

inability of predicting seizure onset (Murray, 1993; Buck et al., 1997). Thereliable 

predictability of seizure onset would dramatically improve the safety and quality of life of 

these patients who cannot be treated successfully by common therapeutic options (Schachter, 

1994). For example, patients would be able to prevent dangerous situations when being 

warned of upcoming seizure. Various automated intervention systems and measures could be 

implemented like applying electrical brain stimulations or delivering short-acting 

anticonvulsant drugs by using implanted devices (Stein et al., 2000;Elger, 2001). 

Additionally, the investigation of the pathophysiological mechanisms causing seizures could 

be improved by the accurate detection of states preceding seizures. 

Mormann et al., (2007) stated that seizure prediction is the long and winding road in their 

review article. D’Alessandro et al., (2003)used intelligent genetic search technique to classify 

preseizure and non-preseizure classes from four patients by a probabilistic neural network, 

reporting a sensitivity of 62.5% with 90.5% specificity. Costa et al., (2008)compared 6 types 

of neural network architectures which used 14 features extracted from EEG of two patients to 

classify brain states into four classes: inter-ictal, pre-ictal, ictal and pos-ictal. The accuracies 

of up to 99% were achieved. Mirowski et al., (2009)achieved 71% sensitivity and 0 false 

positives using convolutional networks combined with wavelet coherence. Chisci et al., 

(2010) used Autoregressive (AR) models to classify pre-ictal and inter-ictal classes from nine 

patients, reporting 100% sensitivities and average false positive rates of 0.174/h (on the inter-

ictal dataset).  

This paper is organized as follows. Section 2 describes the EEG data, signal processing and 

feature extraction methods, and the artificial neural networks with a brief description of each 

one. In section 3, the performance of the proposed system is presented and discussed. Finally, 

section 4 presents concluding remarks and perspectives for future work. 
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2.Materials and methods 

2.1 Subjects and data recording 

We analyzed long-term EEG data recorded during invasive pre-surgical epilepsy monitoring 

at the Epilepsy Center of the University Hospital of Freiburg, Germany. The Neurofile NT 

digital video EEG system with 128 channels, 256 Hz sampling rate, and a 16 bit analogue-to-

digital converter was used to acquire the EEG data. Each of 21 patients, suffering from 

medically intractable focal epilepsy, contains datasets called “ictal” and “inter-ictal”. The 

“ictal“ dataset consists of files containing epileptic seizures, each having a seizure-free "pre-

ictal" period of at least 50 minutes. The “inter-ictal“ dataset consist of approximately one day 

of seizure-free EEG recordings for each patient. Each patient had between two and five 

seizures, with an average of 4.2 seizures per patient or a total number of 87 seizures(Maiwald 

et al., 2004).The onset and end times of each seizure were determined by visual examination 

of skilled epileptologists. 

 

2.2 Multiscale Principal Component Analysis 

Multiscale Principal Component Analysis (MSPCA) combines the wavelet analysis with 

PCA. The MSPCA method incorporates the decomposition of each variable on a selected 

family of wavelets during which the wavelet coefficients are thresholded. After that, the PCA 

model is separately built for the coefficients at each scale. In order to yield one model for all 

scales together, the models at important scales, which show process disturbances or abnormal 

operation, are merged in an effective scale-recursive way(Bakshi 1998; Ganesan, Das, & 

Venkataraman, 2004).Because of its multiscale type, it is suitable to use MSPCA for 

modeling of data consisting of contributions from events which behavior changes over time 

and frequency. MSPCA is powerful tool for monitoring autocorrelated measurements without 

time-series modeling or matrix augmentation due to approximate decorrelation of wavelet 

coefficients. The MSPCA method not only selects and monitors the significant signal features 

but also conforms to the nature of the signal (Bakshi 1998). 

 

2.3 Discrete Wavelet Transform 

Signals like EEG may contain transitory or non-stationary characteristics. That is why 

Fourier Transform, which can be applied to the stationary signals, is not an ideal method to 

be directly applied to signals like EEG. Therefore, time-frequency methods like Wavelet 

Transform should be used.  

The analysis based on Discrete Wavelet Transform is best explained in terms of filter banks. 

Multi-resolution decomposition of a signal is the procedure of using a group of filters to 

separate that signal into various spectral components. Every stage of this procedure consists 

of two digital filters and two down-samplers by 2. The first filter is the discrete mother 

wavelet, being high-pass in nature. The second filter is its mirror version, being low pass in 
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nature. Outputs of the first high-pass and low-pass filters, once being down-sampled, provide 

the detail D1 and the approximation A1, respectively (Adeli, Zhou, & Dadmehr, 

2003;Marchant, 2003; Semmlow, 2004).  

 In DWT analysis it is very important to choose the appropriate number of 

decomposition levels and appropriate wavelet selection. The components of the dominant 

frequency of the signal are the main base for choosing the number of decomposition levels. 

Distribution of energy of the EEG signal in frequency and time is shown by a compact 

representation of the extracted wavelet coefficients. Using statistics over the wavelet 

coefficients sets helped in decreasing the dimensionality of the extracted feature vectors 

(Kandaswamy et al., 2004).Subasi (2007) and Subasi&Gursoy (2010) achieved high 

accuracies in classifying EEG signals using statistical feature vectors extracted from wavelet 

coefficients. 

 

 

2.4 Multilayer Perceptron 

Multilayer feedforward networks is composed of a set of source nodes which serve as sensory 

units that form the input layer, one or more hidden layers and an output layer. Hidden layers 

and an output layer consist of computational nodes. The input signal is transmitted through 

the network in a forward direction, layer by layer. This type of neural networks, which 

represents a generalization of the single-layer perceptron, is generally known as multilayer 

perceptron (MLP). When trained in a supervised manner using highly popular and 

computationally efficienterror back-propagation algorithm, multilayer perceptrons can 

successfully solve complex and different problems, but certainly do not provide an optimal 

solution for all solvable problems. Essentially, error back-propagation learning consists of a 

forward pass and a backward pass. In the forward pass, the effect of an input vector, when 

being applied to the sensory nodes, propagates through the network. At the end, a set of 

outputs, as the real response of the network, is formed. The synaptic weights are all fixed 

during this stage. However, these synaptic weights are being tuned according to error-

correction rule during the backward pass. Namely, an error signal is produced as the real 

response of the network is subtracted from a desired (target) response. This error signal is 

then propagated backward through the network during which the synaptic weights are tuned 

so that the difference between the real and the desired response of the network decreases.One 

or more layers of hidden neurons enhance network’s learning of difficult problems by 

extracting more significant features from the input vectors(Haykin 1999). 

 

2.5 Radial Basis Function Network 

The design of a neural network can also be perceived as a curve-fitting (approximation) 

problem in a high-dimensional space,where learning is viewed as finding a surface which 
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represents a best fit to the training data in a multidimensional space. This multidimensional 

surface is then used to interpolate the test data. The method of radial-basis functions is 

motivated by such a viewpoint. The early work on radial-basis functions is reviewed in 

Powell (1985).A radial-basis function (RBF) network basically consists of three layers having 

completely different tasks. The input layer connects the network to the environment via 

source nodes that serve as sensory units. A nonlinear transformation from the input space to 

the hidden space of high dimensionality is applied in the second layer as the only hidden 

layer in the network. The output layer, producing the response of the network to the input 

vector, is linear. The effect of applying nonlinear transformation prior to a linear 

transformation is explained by Cover (1965). As stated by him, there is a higher change of a 

pattern recognition problem to be linearly separable in a high-dimensional space. Therefore, 

the dimension of the hidden space in an RBF network is often made high. Moreover, the 

higher the dimension of the hidden space, the more accurate the approximation of smooth 

mapping is(Mhaskar, 1996; Niyogi and Girosi, 1996). 

 

3. Experimental results and discussion 

3.1 Experiment 

Classification of EEG signals consists of data acquisition and preparation, signal processing, 

feature extraction and classification. We propose a method based on MSPCA for denoising, 

DWT for feature extraction and ANNs for classification.We extracted 4096-samples-long 

segments from both datasets of each patient. Approximately two segments per hour were 

extracted from “inter-ictal” dataset, producing 1050 inter-ictal segments. We also extracted 

two types of segments from “ictal” dataset: ictal and pre-ictal. We used minimum number of 

4096-samples-long segments to cover all 87 seizure activities, producing 652 ictal segments. 

We extracted five segments within a seizure-free "pre-ictal" period of 50-60 minutes, 

producing 435 pre-ictal segments. Only one out of six channels was used for extraction of 

EEG segments, although results from the different authors presented a poor performance of 

univariate measures (Mormann et al., 2005). 

We selected the number of decomposition levels for DWT to be 5 since EEG signals contain 

no useful frequency components above 30 Hz, and because of 256Hz sampling rate of 

Neurofile NT used to acquire the EEG data. Daubechies 4 (DB4) wavelet filter was used to 

reconstruct the detail and approximation records.All 2137 EEG segments, which belong to 

three different classes, were divided into sub-band frequencies A5 (0-4 Hz), D5 (4-8 Hz), D4 

(8-16 Hz), D3 (16-32 Hz), D2 (32-64 Hz) and D1 (64-128 Hz). Sub-band frequencies A5 and 

D3-D5 almost perfectly correspond to δ (0-4 Hz), θ (4-8 Hz), α (8-12 Hz) and β (12-26 Hz) 

frequencies of EEG signals (Bylsma et al., 1994). 

A set of fifteen statistical features was then extracted from the wavelet coefficients 

representing these sub-band frequencies and fed as inputs to classifiers. A Multiscale PCA 

(MSPCA) de-noising method was also applied to determine if it can further enhance the 
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classifiers’ performance. We implemented a classification system based on MLP and RBF 

network using wavelet statistical features as inputs and 10-fold cross validation method, to 

guarantee validity of the results. 

 

3.2 Results 

We performed two types of experiment: with and without MSPCA de-noising method 

applied.In Table 1, we have seen that MSPCA drastically improved the classification 

accuracy of both classifiers, while MLP network achieved higher total classification accuracy 

than RBF network. The accuracies for each class are also presented in Table 1. 

Classifier 
Accuracy 

(Pre-ictal) 

Accuracy 

(Inter-ictal) 

Accuracy 

(Ictal) 

Total  

Accuracy 

MLP +DWT 2.76 % 89.43 % 60.58 % 62.99 % 

RBFN +DWT 7.13 % 90.57 % 54.45 % 62.56 % 

MLP + MSPCA+DWT 87.82 % 97.43 % 96.17 % 95.09 % 

RBFN + MSPCA+DWT 71.49 % 97.14 % 94.02 % 90.97 % 

Table 1. Accuracies of MLP and RBF network classifiers with and without MSPCA. 

 MSPCA significantly improved the classification accuracy for ictal and pre-ictal 

samples, while accuracy performance for inter-ictal class was only slightly improved. 

Classifiers are totally useless for seizure prediction if MSPCA is not applied. 

 

3.3 Discussion 

The experiment results show that MSPCA is an effective denoising method for improving the 

classification performance. Without MSPCA, our method classified many pre-ictal/ictal data 

samples as being inter-ictal.Aminghafari, Cheze, & Poggi, (2006) showed that de-noised 

signals by MSPCA magnify the spikes more clearly. Therefore, MSPCA enhanced our 

classifier's performance for about 50%. 

Our approach outperformed the one explained in D’Alessandro et al., (2003). Theyalso used 

data of only four patients to developfour different classifiers for each patient. Although Costa 

et al., (2008)introduced one more class (pos-ictal) and achieved accuracies of 99%, using data 

of only two patients from Freiburg database is insufficient to successfully train and develop a 

model. Mirowski et al., (2009) predicted all seizures without false positives for 15 patients, 

without mentioning how classifier performed on data belonging to six remaining patients 
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from Freiburg database. Thus, sensitivity of 71% is reported, which is lower than 

classification accuracies for pre-ictal class of both of our classifiers. Chisci et al., (2010)used 

nine patients for which additional electro-corticographic recordings (grid–strip electrodes) 

were available and achieved 100% sensitivity with low false positive rates. However, they 

developed patient-specific system by training nine classifiers, where each classifier used train 

and test data of only one patient. Our proposed system is more general because only one 

classifier is developed for all patients and it is not bound to specific group of epileptic 

patients. 

 

4. CONCLUSION  

We showed that a high classification accuracy of EEG signals can be accomplished in cases 

when additional “pre-ictal” class is introduced. Many research papers showed that DWT 

coefficients well represent the EEG signals and ensure a good differentiation between classes. 

However, we managed to achieve high accuracies only when MSPCA de-noising method was 

applied to Freiburg dataset. The accuracy may be further improved by applying dimension 

reduction or feature selection methods like ICA or LDA on the feature vectors. Measures that 

characterize the relations between two or more channels can be used to further enhance the 

performance. Using only inter-ictal and pre-ictal samples to train the classifier could be 

investigated since our aim is not seizure detection. Freiburg dataset can serve as a challenge 

for trying other feature extraction methods rather than DWT. The proposed approach may 

become an efficient tool to predict epileptic seizures from EEG recordings.  
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Abstract 

In this study, we present a comparison of machine learning technics using antepartum 

cardiotocographs performed by SisPorto 2.0 in predicting newborn outcome. CTG is widely 

used in pregnancy as a technique of measuring fetal well-being, mainly in pregnancies with 

increased risk of complications. It is a non-invasive way for checking the fetal conditions in 

the antepartum period. CTG is a continuous electronic record of the baby’s heart rate 

acquired via an ultrasound transducer placed on the mother’s abdomen. The information 
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