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Abstract 

In this study, we present a comparison of machine learning technics using antepartum cardiotocographs 

performed by SisPorto 2.0 in predicting newborn outcome. CTG is widely used in pregnancy as a 

technique of measuring fetal well-being, mainly in pregnancies with increased risk of complications. It 

is a non-invasive way for checking the fetal conditions in the antepartum period. CTG is a continuous 

electronic record of the baby’s heart rate acquired via an ultrasound transducer placed on the mother’s 

abdomen. The information efficiently took out from these recordings can be used to envisage 

pathological state of the fetus and makes an early intervention possible before there is a permanent 

damage to the fetus. Using features extracted from the FHR and UC signals, the techniques ANN and 

Simple Logistic was trained to predict the normal and the pathological state. The dataset which consist 

of 1831 instances with 21 attributes was tested by using the methods which is mentioned above. The 

CTG recordings were also categorized 1655 of them as normal and 176 of them as pathological by three 

expert obstetricians’ consensus. They were showed that ANN and Simple Logistic based methods were 

able to classify the data as normal and pathological with 98.5% and 98.7% accuracy, respectively. 
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1. INTRODUCTION 

Cardiotocogram (CTG) contains of two distinct signals, its continuous recording of instantaneous fetal 

heart rate (FHR) and uterine activity (UC).Only during labour, after spontaneous or induced membrane 

rupture, direct measurement of intra-uterine pressure and foetal ECG can provide more accurate results 

(Cesarelli, et al., 2009). The information which is acquired from CTG is used for early recognition of a 

pathological state (i.e. congenital heart defect, fetal distress or hypoxia, etc.)and may help the 

obstetrician to predict future complications and interpose before there is a permanent damage to the 

fetus. Although its usefulness, there has been some disagreement as to the utility and the effectiveness 

of CTG observing, especially in low-risk pregnancies. Still nowadays, there is a very high intra- and 

inter-observer fluctuation in the assessment of FHR patterns, which can lead to an incorrect appraisal of 

foetal status (Van Geijn, 1996). On one hand a falsely diagnosed foetal pain may lead to unnecessary 

interventions; on the other hand, an improper diagnosis of foetal well-being may deny necessary 

maintenances (Cesarelli, et al., 2009). To advance CTG analysis, more objective methods for CTG 

interpretation are of vital importance; therefore, significant efforts have been spent and several analysis 

approaches have been proposed in recent years (Magenes, et al., 2004). The purpose of this study is to 

present a comparison between two different techniques for ECG recordings. In this study, we used 

WEKA as machine learning algorithms and classifiers to classify ECG signals by the methods of ANN 

and Simple Logistics. 

 

 

 



2. MATERIALS AND METHODS 

2.1. Database 

The data used in this study were obtained from UCI Machine Learning Repository (Frank A, 2010) and 

originated from a study conducted in University of Porto. The dataset consists of measurements of fetal 

heart rate and uterine contraction features on 1831 CTG recordings classified by three expert 

obstetricians. A consensus on classification label was assigned to each of the data. Out of the 1831 

recordings, 1655 were classified as normal foetal state and the remaining 176 were classified as 

pathological. The CTG recordings were automatically processed by an automated CTG analysis 

program SisPorto2.0 (Ayres-de-Campos, et al., 2000) and 21 diagnostic features were extracted from 

the recordings. The features are illustrated in Table1. 

Table 1 Summary of all CTG features of the Data 

Symbol Attribute information 

LB  FHR baseline (beats per minute)  

AC  # of accelerations per second  

FM  # of fetal movements per second 

UC  # of uterine contractions per second  

DL   # of light decelerations per second 

DS  # of severe decelerations per second  

DP  # of prolonged decelerations per second  

ASTV   Percentage of time with abnormal short-term variability  

MSTV Mean value of short-term variability  

ALTV Percentage of time with abnormal long-term variability 

MLTV Mean value of long-term variability  

Width Width of FHR histogram  

Min Minimum of FHR histogram  

Max Maximum of FHR histogram 

Nmax  # of histogram peaks  

Nzeros  # of histogram zeros  

Mode  Histogram mode  

Mean  Histogram mean  

Median  Histogram median  

Variance  Histogram variance  

Tendency  Histogram tendency  

NP  Fetal state class (code (N=normal; P=pathological)) 

2.2.  Artificial Neural Network  

A perceptron is defined by (Rosenblatt, 1988 )as a machine that can learn, using samples, for assigning 

input vectors (samples) to different classes, using a linear function of the inputs. Another one (Minsky 

& Papert, 1969 ) describes the perceptron as a stochastic gradientdescent algorithm that tries to linearly 

classify a set of n-dimensional training data. The word perceptron is used in the former sense as a 

machine, following Rosenblatt, and state explicitly to the "perceptron learning algorithm" whenever 



needed. Inits simplest form, a perceptron gets a single output whose values defines to which of two 

classes each input pattern fits. An individual node which applies a step function to the net weighted sum 

of its inputs represents such perceptron. The input pattern is regarded as belongs to one class or the other 

depending on whether the node output is 1 or 0. From the point of view of applied hardware applications, 

since the weight values have neither too big nor too small, the weights values get the significant 

importance. Therefore the hardware devices whose outputs have limited variety can be used to represent 

the weights with satisfactory precision. Because of these reasons, weight scales not above 1 are often 

chosen. 

2.3. Simple Logistics  

Frequently the responses which are acquired from medical data are not numerical but binary. When the 

latter happens, it is suitable to use a binary logistic regression model method to show the correlation 

between the disease’s measurements and its risk factors. It is a type of regression used while the response 

variable is a dichotomy and the risk factors of the illness are of any kind (Agresti, 2002). Either the 

linearity in the correlation between the risk factors and the response variableor does it need normally 

distributed variables are assumed for a logistic regression model.The first step of modeling binomial 

data is changing of the probability range from (0, 1) to (−∞, ∞) instead of using the linear model for the 

response variable of the probability of success on risk factors. The logistic transformation or logit of the 

probability of success (π) is log {π/(1 − π)}, which is shown as logit (π) and defined as the log odds of 

success. We can easily say that any value of (π) in the range (0, 1) matches to the value of logit (π) in 

(−∞, ∞). Generally, binary data results from a nonlinear correlation between {π(x)}and (x), where a 

fixed variation in (x) has less effect when {π(x)} is near (0 or 1) than when {π(x)} is near (0.5) (Cohen, 

et al., 2003). 

3. RESULTS AND DISCUSSION 

In this study ANN and Simple Logistismodels were trained to generate a value of “0” for the normal 

CTG data and ‘1’ for the pathological CTG data. The classification results for two different 

implementations methods applied on the dataset. Two statistical indices; sensitivity (Se) and specificity 

(Sp); were computed. They are calculated as (Jekova, et al., 2008): 

                                                  𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
;         𝑆𝑒 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                             (3) 

                                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
∗ 100%                                                       (4) 

where TP(true positives) represents the amount of correctly classified CTG data; TN(true negatives) 

represents the amount of CTG data not being part of the normal class and not classified in the normal 

class; FP(false positives) is the amount of incorrectly classified CTG data; FN(false negatives) is the 

amount of CTG data, classified in a different class (Jekova, et al., 2008).10 fold cross validation is used 

to test the data.The best results in this research and results are given in Table 2 and their graphical 

representation is illustrated in Figure1. Accuracy obtained for these two methods are also compared. For 

Ann accuracy obtained is 98.47 %, for Simple Logistic accuracy is 98.74 %. According to these results, 

it is easily said that for this data type using Simple Logistic is more appropriate than Ann. As shown in 

the Figure 1. 

Table 2 Performance Comparison 

 Artificial Neural Network Simple Logistics 

Sensitivity (%) 99.39 99.52 

Specificity (%) 89.77 91.48 

Accuracy (%) 98.47 98.74 

 



 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSION  

In this study, we compareddata mining techniques that are most suitable to classify CTG data. According 

the results which are obtained the Simple Logistics method is giving more  accurate than the Artificial 

Neural Network. In the presented work the use of neural networks and Simple Logistics classifiers for 

classifying CTG signals are studied. An artificial neural network that used forchecking the fetal 

conditions in the antepartum periodprovides a valuable diagnostic decision support tool for physicians. 

Networks in each group were trained with the same data sets and targets. The accuracy rates achieved 

by both model presented for classification of the CTG signals were found to be comparable. Therefore 

we have concluded that the diagnostic decision support systems can become helpful when the 

physician's judgment is dependent on some other expensive tests; hence these techniques reduce the 

need for those assessments or increase the decision accuracy. 
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