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Abstract: Cancer is a very troubling disease due to its unique morphological characteristics, 
capacity for drug resistance, and immunosuppressive abilities. Traditional methods used both 
for research of cancer and its subsequent treatment have fallen short of being able to accurately 
understand and ultimately defeat cancer within the body. Biomaterials present a unique 
solution to many problems associated with cancer. The use of biomaterials in cancer cell 
modeling has promoted a better understanding of tumor microenvironments. Biomaterials can 
also serve as drug and adjuvant carriers that are more likely to reach their target cancer cells. 
Many biomaterials also have standalone antitumor properties, and can also help in modulating 
the immune response, triggering various immune cells to attack cancerous cells. Naturally 
derived biomaterials include polysaccharides, lipids, polypeptides, vitamin E derivatives, and 
even plant extracts like curcumin. Biomaterial-based cancer treatments tend to have a longer-
lasting and more dependable effect inside the body and can come in many different forms, from 
polymeric scaffolds to injectable nanoparticles.  
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1. Introduction

One of the most terrifying diagnoses to receive is the diagnosis of having any kind of 
cancer. Cancer is a very complex disease, as it occurs after mutations in the DNA of the cell cause 
morphological mutations that fundamentally change the biology and biochemical processes of the 
cell [1]. Cancer cells have many notable hallmarks, including their ability to divide indefinitely, 
their tendency to rapidly undergo glycolysis to secrete lactate even in the presence of oxygen, 
angiogenesis, and decreased cell senescence and apoptosis [1], [2]. To make matters worse, cancer 
cells can masterfully disguise themselves from immune cells such as cytotoxic T lymphocytes 
(CTLs) and dendritic cells (DCs), and can even recruit cells such as T regulatory cells (Tregs) and 
myeloid-derived suppressor cells (MDSCs) to keep other immune cells from recognizing them as 
cancerous [3], [4], [5]. Additionally, aggregated cancer cells form tumors with complex 
microenvironments, a phenomenon still not completely understood by scientists [6]. The 
combination of these factors stipulates that cancer is an incredibly difficult disease to treat, and it 
is no surprise that it has been considered a death sentence in the past [2].   

However, there is hope to both biochemically understand and successfully treat cancer. 
One stride made in this area is the paradigm shift in how cancer is viewed, as some researchers 
and pharmaceutical industries are choosing to see cancer as a chronic illness with potentially life-
threatening complications, rather than a life-threatening disease in and of itself [2]. Furthermore, 
toxic chemotherapeutic and radiotherapeutic treatments are no longer the only options for cancer 
treatment. This is due to the exploration of biomaterials as drug carriers, anticancer therapeutics, 
and adjuvant treatments [3], [7]. Biomaterials are uniquely suited to treat cancer as they are 
biocompatible with normal as well as cancerous tissue, allowing them to get close to their target 
cells, which is something that direct drug injections are often unable to do [2], [8]. Additionally, 
biomaterials allow for in-depth 3D modeling of cancerous tumors and microenvironments, which 
has led to a deeper understanding of cancer and how to treat it [9]. This review aims to summarize 
how biomaterials can be used in both cancer research and treatment, in hopes of raising 
awareness of alternative solutions to conventional practices that are currently heavily relied upon 
and may ultimately harm patients.  

2. The Cancer Microenvironment Challenge and Using Biomaterials as a Solution

One of the most challenging aspects of laboratory-based cancer research is the accurate 
modeling of cancer cells and metastasizing tumors. Cancer drug screening experiments have often 
been conducted using standard 2D cell culture for many years, which has fallen short of delivering 
a successful picture of how cancer drugs will affect tumors inside an in vivo setting [10]. The main 
limitations of 2D cell culture for cancer drug screening lie in the inadequate physiological and 
biological complexity of these systems, as well as a shortage of environmental factors that are 
present in a tumor, such as supporting secondary cell types and extracellular matrix (ECM) 
proteins [8]. For cancer cells to be properly understood and screened for therapies, a proper 
tumor microenvironment (SME) must be created [10]. TMEs can be cultured using various 
biomaterials and tissue engineering techniques [9]. There are two considerations to take into 
account when studying the TME: the physical and the chemical cues which indicate cancer and 
its subsequent drug resistance [10].  

Physical cues are all indications of a tumor’s physical ability to resist cancer drugs. The 
first cue is just the physical barrier presented by the tumor, which can increase drug resistance by 
simply keeping active substances away from the tumor core [10]. One of the most important 
physical cues is the structure of cancer’s ECM [9]. The specific ECM around a cluster of cancer 
cells or tumors can contribute to cancer drug resistance because the ECM creates an environment 
that isolates the cancer cells from substances that might be harmful to them [6], [11]. ECM 
produced by cancer cells can undergo a process known as matrix stiffening, where collagen-
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modifying enzymes such as proline hydroxylase, lysyl oxidase (LOX), and lysine hydroxylase 
cause the ECM to remodel itself to become harder; it is often an indicator of cancer progression 
[2]. The ECM can also secrete substances to make cancer cells more adhesive and can also activate 
anti-apoptotic signals [6], [10]. Additionally, TMEs inside the ECM produce biochemical cues, 
which include responses to hypoxia, where they may stop proliferating but can still withstand 
cytotoxic agents [8]. They can also make different changes with regards to pH, which translates 
to resistance in the form of ion trapping, efflux pumps, and resistance to acidic pH [10]. 
Additionally, the ability of tumors to interact with other cells outside the TME can trigger 
immune-suppressive responses for immune cells and anti-apoptotic responses within cancer cells 
[4], [10]. 

Many of these factors involved in TMEs cannot be properly simulated using standard 2D 
culturing. Fortunately, several methods for cancer cell culturing using biofilm-based 3D 
techniques exist [9]. Biomaterial-based research for cancer modeling is currently primarily 
conducted with synthetic polymers, such as polyethyleneimine (PEI) and polyethylene glycol 
(PEG), which researchers have begun using for the design of “intelligent” biomaterials to simulate 
the growth conditions of cancer cells, including spheroid formation techniques, 3D bioprinting, 
and organ-on-chips [2]. Polymeric scaffolds can be used to model the unique ECM environment 
present around cancer cells discussed previously [10]. Another technique under exploration is 
injection molding, where a mixture of cells containing some sort of naturally derived or synthetic 
cross-linking polymer, such as hydrogel or collagen, is injected into a highly detailed and specific 
mold [2], [8]. Microfluidic cell culture systems, which allow the manipulation of incredibly 
minuscule amounts of fluid (down to the nanoliter) can also be used to shed insight into cancer 
biology [10]. Additionally, bioprinting can be used to create specific cancer cell systems for drug 
testing [2]. Continued research into the use of biomaterials for 3D modeling of cancer cells and 
their TMEs could even shed light onto the more elusive concepts of cancer growth, such as 
immune response and microbiome affectation, as well as how cancer cells can alter their 
surrounding environments to ensure their survival [6].  

3. Cancer Treatment Using Naturally Derived Biomaterials

Biomaterial-based cancer treatment can act against tumors and cancer cells in the 
following ways: by carrying a drug or adjuvant to the site of cancer cells or tumors, by having 
direct antitumoral properties, or by modulating the immune system and targeting it to attack 
cancer cells [2]. The reason biomaterials are increasingly explored as potential cancer treatments 
lies in the abilities of various biomaterials to better penetrate and attach to the TME of a tumor 
[2]. Biomaterial-based carriers can take the form of 3D structures such as scaffolds and conjugates 
generally formed by polymers of polysaccharides [12]. Injectable carriers such as liposomes, 
inorganic nanoparticles, or polypeptides can be injected into the body and then allowed to find 
their target [3]. While the biophysics and chemistry behind biomaterial carriers are, of course, 
complex in nature, the concept is fairly simple: a drug, nucleic acid sequence, adjuvant, or other 
anticancer substance is loaded onto a specific carrier, often labeled with receptors that will allow 
the carrier to bind to cancer cells [2], [3]. Once bound to the target cells, the carrier releases its 
contents. Some carriers that have adhesive properties, primarily polysaccharide-based carriers, 
can remain attached to a cluster of cancer cells, allowing a substance delivered to have a longer 
effect [2]. Certain biomaterial-based carriers have anticancer properties in and of themselves, 
such as certain polar lipids, polymers, and polysaccharides, and some have characteristics that 
make them initially compatible and therefore recognizable by cancer cells, such as in the case of 
hyaluronic acid [2], [8].   

Since cancer cells are exceptional at evading immune response, an important utilization 
of biomaterials in cancer treatment lies in the realm of immunotherapy. Biomaterial-based 
immunotherapeutics can have a longer-lasting effect when treating cancer than simple injections 
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of chemotherapeutic drugs or radiotherapy [12]. There are multiple ways in which biomaterials 
can stimulate in vivo immune responses to cancer cells. Biomaterials containing both antigens 
and immune adjuvants can stimulate DCs and other antigen-presenting cells (APCs) that may 
have been inactivated by cancer cells [7], [13]. Another method for stimulating an immune 
response to cancer is by interfering with T cells whose receptors do not recognize cancer cells as 
pathogens due to inhibitory factors such as PD-1/PD-L1 and CTLA4 released by the cancer cells; 
by injecting an anti-PD-1/PD-L2 and CTLA4 antibodies, T cells can be reprogrammed to view 
cancer cells as targets [7].  Additionally, immune-stimulating cytokines such as interleukin-2 (IL-
2) and interferon-alpha (IFN-alpha) can be coupled to a biomaterial carrier and injected to serve
as an immune response adjuvant by stimulating the production and differentiation of CDLs [3].
Other adjuvants include toll-like receptor (TLR) agonists, pathogen-associated molecular pattern
(PAMP) molecules, and damage-associated molecular pattern molecules (DAMP), all of which aid
in activating both innate and adaptive immune response [4].

4. Types of Naturally Derived Biomaterials Used in Cancer Treatment and Research

For cancer research and treatment, it is often more cost-effective, efficient, and safe to use 
biomaterials naturally synthesized by algae, plants, animals, and in some cases even bacteria, as 
opposed to synthetic materials [8]. Some of the more commonly utilized biomaterials include 
polysaccharides such as chitosan, noted for its cytotoxic ability in certain breast cancer lines; 
hyaluronic acid, which is significantly present in tumors and can function as an effective 
drug/adjuvant carrier; alginate, which induces the release of proinflammatory cytokines from 
macrophages; or pectin, which can function as a drug carrier and has apoptotic-stimulating 
abilities [2], [8].  

Polar lipids can also be used for cancer treatment, as their amphipathic structure allows 
them to carry various drugs that are either hydrophobic or hydrophilic [2]. Lipid-based 
nanomaterials can serve as carriers of antigens and immune adjuvants targeting DCs, to initiate 
a CTL response [3]. The use of lipid-based biomaterials and liposomes showed to have a 
significant effect on the immune system. One study sought to create a cancer vaccine by loading 
liposomes with a peptide specific to melanoma, TRP2, and a CpG-ODN immune adjuvant, and 
the vaccine was found to improve the survival of tumor-bearing mice [15]. Some lipids even have 
direct anticancer properties, as in the case with alkyl phospholipids (APLs) which have shown 
antineoplastic activity by interfering with lipid metabolism in cancer cells [2].  

Other natural biomaterials such as polypeptides and vitamin derivates can also be used as 
both carriers and tumor antagonists. Polypeptides and peptide derivatives can also serve as drug 
and gene therapeutics carriers and are recognized for their significant biocompatibility and 
chemical reactivity, and certain polypeptides such as polylysine, polyarginine, polyhistidine, and 
polyglutamic acid have direct antitumoral or immunomodulatory activities [2]. The vitamin E 
derivate alpha-tocopherol-succinate (TOS) can be paired with polysaccharide carriers such as 
hyaluronic acid and chitosan to form micelles for the loading of hydrophobic drugs [2], [16].  
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TABLE 1. Specific Functions of Biomaterials in Cancer Treatment 

Biomaterial Type Carrie
r 

Directly Anti-
Tumoral 

Immunomodulato
ry 

Alginate Polysaccharide ✓ ✓ 

Alkyl phospholipid Lipid ✓ ✓ 

α-TOS Vitamin E derivate ✓ ✓ 

Chitosan Polysaccharide ✓ ✓ 

Gold Metal nanoparticle ✓ ✓ ✓ 

Hyaluronic Acid Polysaccharide ✓ 

Iron Oxide Metal nanoparticle ✓ ✓ ✓ 

Liposomes Lipid ✓ ✓ 

Pectin Polysaccharide ✓ ✓ 

Polyarginine Polypeptide ✓ ✓ 

Polyglutamic acid Polypeptide ✓ ✓ 

Polyhistidine Polypeptide ✓ ✓ 

Polylysine Polypeptide ✓ ✓ 

Silica Nanoparticle ✓ ✓ 

5. Curcumin Nanoparticles

One very notable example of a plant-extract biomaterial used to treat different cancers is 
curcumin, from which nanoparticles are created and then usually loaded onto a separate 
biomaterial carrier to then target tumors and cancer cells. Curcumin, chemically known as 
diferuloylmethane, is a polyphenolic substance extracted from the plant Curcuma longa, 
colloquially known as turmeric and used as a spice and coloring agent worldwide [17], [18], [19]. 
It has also been used in traditional Indian (Ayurvedic) and traditional Chinese medicine (TCM) 
practices to treat inflammation caused by a wide variety of disorders [19]. Research has shown 
that it suppresses NF-κB activation, a pathway that normally stimulates inflammation in cancer 
cells [18], [20], [21]. Curcumin also can downregulate AP-1 and STAT-3 pathways, which 
effectively retards the growth of cancer cells [18], [22].  

Several studies have been performed to test if curcumin nanoparticles could truly work as 
anticancer agents when coupled with carriers formed from various biomaterials, and the results 
show promise for curcumin’s use in the future for cancer treatment. Chitosan-coupled curcumin 
nanoparticles showcased the prominent mucoadhesive ability and drug retention when used to 
treat mouth cancer [23].  Another study used a silk fibroin and a blend of silk fibroin and chitosan 
polymers to encapsulate curcumin nanoparticles, where silk fibroin carriers were found to be 
more efficient due to their greater entrapment efficiency [24]. Other studies showed the 
prominent activity of curcumin nanoparticles against triple-negative breast cancer (TNBC) cells 
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and drug-resistant human ovarian adenocarcinoma cells [25]. Perhaps one of the most 
surprisingly effective uses of curcumin nanoparticles is against pancreatic cancer, and phase II in 
vivo studies reported that some patients experienced tumor regression and increased life 
expectancy, albeit small [20]. Numerous studies using curcumin against colorectal cancer 
reported that a variety of different carriers could be used to effectively transmit curcumin into the 
cell, including liposomes, other lipid carriers, micelles made of polymers, gold particles, and 
nanogels [22].  

6. Conclusion

Various biomaterials could provide effective solutions to the massive challenges presented 
by cancer. By using polymeric scaffolds, tissue engineering, and intelligent biomaterial solutions 
such as organs-on-chips and microfluidics, tumor models can show a much more in-depth picture 
of the complexity of cancer dynamics and microenvironments. Many biomaterials themselves 
present antitumor or immunomodulating capabilities, which is a significant benefit when 
researchers look to use biomaterials therapeutically, in addition to being able to function as 
carriers for other anticancer therapies. Researchers have already looked into many different types 
of natural biomaterials, and one area of potential future research could be to examine how 
anticancer properties of different biomaterials might interact with one another to optimize cancer 
treatments. Another excellent focus area for future research would be to examine what kinds of 
cancers different biomaterials work best against. The wealth of research available showing the 
efficacy of biomaterials in both in vitro and in vivo treatments lends a lot of hope to a future where 
safe, effective, and even low-cost solutions for cancer exist, and people no longer need to fear 
cancer as a death sentence.   

Appendix 1. List of abbreviations 

CTL - cytotoxic T lymphocyte 
DC - dendritic cell 
Treg - T regulatory cell 
MDSC - myeloid-derived suppressor cell 
TME - tumor microenvironment 
ECM - extracellular matrix 
LOX - lysyl oxidase 
PEI - polyethyleneimine 
PEG - polyethylene glycol   
APC - antigen-presenting cell 
IFN-alpha – interferon-alpha 

TLR - toll-like receptor 
PAMP - pathogen-associated molecular 
pattern 
DAMP - damage-associated molecular 
pattern 
BMDC - bone marrow-derived dendritic 
cell 
TNF - tumor necrosis factor 
CpG-ODN - CpG oligodeoxynucleotide 
alpha-TOS - alpha-tocopherol-succinate 
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