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Abstract  

The modelling of infilled frames is complex due to the large number of variables as well as 

the non-linear material behaviour involved. Artificial Neural Network (ANN) is found to be a 

tool capable of solving such problems. This has led to the increasing use of ANN for 

analysing infilled reinforced concrete frames. This paper reports the details of a study 

conducted using ANN for predicting the failure of an infilled reinforced concrete infilled 

frame subjected to lateral loading. Using the data generated based on analytical solutions, the 

ANN model was trained. The so trained model was tested for different set of input parameters 

and the output values were compared with the actual values based on analytical results. The 

agreement was found to be good. 
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1. INTRODUCTION 

The principle behind Artificial Neural Networks is the functioning of the human brain. 

Different areas in engineering and technology use this technique for solving complex 

problems. In civil engineering, it is successfully applied to areas like optimal design of 

structures, earthquake characterization, damage detection etc. It is found to be efficient for 

analysing structures which are otherwise very difficult to analyse due to various constraints. 

Different approaches have been used in the past to analyse the infilled-framed structures. In 

general, the theoretical studies were followed by experiments to evaluate the reliability of the 

proposed method. In most of the experimental investigations, only models are used since 

testing of prototype structures will be costly, time consuming and laborious. The infill walls 

are used as partitions and / or architectural elements. The presence of infill is usually 

neglected in conventional designs. Since the interaction between the frame and the infill plays 

an important role in the stiffness and strength of infilled frames, a method in which the infill 

portion is neglected will not be a realistic one. 

Maurizio Papia [1998] used numerical analysis to examine the behaviour of infilled frames 

subjected to horizontal loads. Stafford Smith [1962] studied the behaviour of infilled frames 

subjected to inplane loading, by replacing the infill by an equivalent strut and considering the 
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infill neither as an integral part nor bonded to the frame. Stafford Smith and Carter [1969] 

considered the possibility of failure occurring either by diagonal cracking or by crushing of 

infill. By an analogy with the behaviour of beam on elastic foundation, the contact length was 

expressed as a function of λh, where λ is a non-dimensional parameter. The method was 

evaluated by testing a three-storey prototype building. The estimated values agreed well with 

the experimental results. A six-storey steel frame with rigid joints was analysed by Jenkins 

[1995] using ANN. He concluded that ANNs could be used for the analysis provided the 

training data is sufficient and the number of units in the hidden layer is adequate to represent 

the internal features and relationships connecting input and output values. Muralikrishna and 

Gangadharam [1999] investigated a single bay single storey portal frame subjected to inplane 

nodal loads and demonstrated that ANN can accommodate the non-linear behaviour of 

infill/frame materials as well as their non-homogeneity and, the uncertainties like lack of fit 

at the frame/infill. 

 

2. ARTIFICIAL NEURAL NETWORKS  

The present study is concerned with the prediction of the collapse load and the displacement 

of infilled reinforced concrete frames under lateral loading using ANN .For this, a five storey 

building with number of bays ranging from one to five is considered. The data for training 

and testing were formed using analytical results.For generating the data analytically, 

equivalent strut method was used. The database consists of 63 sets of results, of which 55 sets 

were used for training the network, and the remaining 8 were used for testing 

2.1. Equivalent Strut Method  

The design method based on equivalent strut concept developed by Stafford Smith and Carter 

[1969] is used here for the analysis. This method predicts the lateral strength and stiffness of 

the brick infilled composite frame . 

 The stiffness and strength of an infilled panel depend not only on its dimensions and physical 

properties but also on its length of contact with the surrounding frames. The length of contact 

α is governed by the relative stiffness of the infill and the frame and Stafford Smith and 

Carter [1969] suggest an approximate relation, 
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 in which h= height of storey and λh = a non- dimensional parameter expressing the relative 

stiffness of the frame and the infill , 
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where Em = Young’s modulus of elasticity of infill, t = Thickness of infill, h1 = Height of 

infill ,Ic = Second moment of area of the column, Ec = Young’s modulus of elasticity of 

column concrete and θ = Slope of the infill diagonal to the horizontal. 

The relative stiffness parameter λh provides the key to the estimation of an infilled frame’s 

behaviour, and it therefore assumes a prominent role in the development and presentation of 

the methods for predicting the strength and stiffness.  

In estimating the lateral strength of an infilled frame, it is necessary to find the weakest of the 

various modes of failure of the frame and the infill. The possible failure modes of the frame 

include the tensile failure of the columns and beams, shear failure of the column and, joint 

failure between the column and the beam. 

An approximate method to determine the strength, based on these modes, is to analyse the 

forces in the equivalent pin-jointed frame subjected to known horizontal loading, assuming 

the infills to be replaced by diagonal struts. The calculated tensile load in the column and 

beam and the shearing components of the load in the diagonal struts may then be compared 

with the respective strengths of the columns and beams. Assuming the frame has adequate 

strength, the brick infill may fail by one of the following modes. 

-Tension cracking of the mortar joints and masonry 

-Shear cracking along the interface between the bricks and mortar (bed joints) 

-Local crushing of the masonry at the mortar in one of the compressed corners of the infill. 

 

2.1.1 Diagonal cracking of infill 

The diagonal tensile strength of masonry may be assumed to be equal to the tensile strength 

of the mortar in all cases where the mortar has lower tensile strength than the individual 

bricks. Using the curves relating the width of the of the equivalent strut and the 

nondimensional parameter λh given by Stafford Smith and Carter [1969] , the diagonal 

cracking tensile strength of brickwork was obtained by Govindan [1986] as 
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where Rt = Diagonal load on the infill to cause cracking, ft = Tensile stress of the infill and  

l1 = length of infill.  

2.1.2. Shear strength of infill 

The resistance of masonry to shear stresses is usually considered to be provided by the 

combined action of the bond, shear strength and the friction between the masonry and mortar. 

Using the design curves given by Stafford Smith and Carter [1969], the following 
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relationship was derived by Govindan [1986] for calculating the shear failure load of the 

infill.  
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where Rs = Diagonal load on the infill to cause shear failure of infill and fs = Maximum 

shear stress of the infill. 

2.1.3. Compressive failure 

After cracking in the brick infill due to shear and/or tension, it has been observed from 

experiments that the corner region of the infill, where crushing takes place generally extends 

along the column contact length α. Based on this, Stafford Smith and Carter [1969] 

developed an approximate formula for the diagonal compressive strength 

Rc = α t Secθ fm      (5) 

where Rc = Compressive failure load and fm = Compressive stress of the infill. Substituting 

the value of α, the compressive failure load can be expressed in the nondimensional form as  
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. For a given infilled frame, λh can be calculated and these expressions can be used to obtain 

the failure load corresponding to the infill for any aspect ratio, l

l
h

l

.  

Unit load method has been used for calculating the deflection of the frames. The equivalent 

strut width for each individual panel in a multistory building varies with the applied loading 

and consequently, the stiffness of the structure decreases as the lateral load increases. The 

stiffness of the equivalent frame for any value of load can be determined by considering 

appropriate equivalent widths of the diagonal struts for the particular load and computing 

Σ EA

LUF

 . It is often useful to know the total lateral displacement at a particular loading. Based 

on the Mechanics of materials approach, the horizontal displacement under any load as given 

by Stafford Smith and Carter [1969] is  
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where δH = total horizontal displacement under applied load, H = Applied load, Σf = 

Summation sign for all beams and columns in the frame including diagonal strut, Σs = 

Summation sign for all diagonal struts only, F= force in members due to applied load H, U = 

Force in members due to unit load applied, at the point and in the direction in which 
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displacement is required, AI = Initial cross-sectional area of members, including diagonal 

strut when H/Hc=0. Ac = Cross-sectional area of diagonal struts when H/Hc=1 in critical 

panel, all others proportioned accordingly, E= Modulus of elasticity of frame members and 

infill, Hc = Horizontal load, to cause crushing in the critical panel infill, determined from the 

appropriate value of Rc / (fm. h t ) for the particular value of λh, L=Length of member. 

 

 

2.2. Identification of Parameters 

Based on a critical study of the parameters affecting the strength and stiffness of infilled 

frames, ten major parameters were identified. They are; aspect ratio, number of bays, area of 

column, column steel, column stirrups, area of beam, beam steel, type of concrete, type of 

steel used for the construction and a non-dimensional parameter λh representing the infill 

behaviour. Concrete of grades C20, C25, C30, C35 and steel of grade S420 and S500 are 

used in the analysis. Hence the number of nodes or processing elements in the input layer of 

the network comes to 14 representing the ten parameters listed above plus the four extra 

grades for concrete and steel considered. The output layer consists of three nodes for the 

collapse loads corresponding to frame as well as infill and the top storey displacement of the 

frame at the verge of failure. 

Table 1. Range of Values for Data Base 

Parameter Symbol Range 

Aspect ratio l/h 1 to 2.5 

No.of bays B 1 to 5 

Area of column Ac 0.02 to 0.15 

Area of column steel Acst 0.0068 to 0.0100 

m2 Area of beam Ab 0.05 to 0.12 m2 

Area of beam steel Abst 0.000315 to 

0.00250 m2 
Area of stirrups Asv 0.000195 to 

0.00113 m2 

Non-dimensional characteristic length 

parameter 

Λh 2 to 15 

Grade of concrete C20,C25,C30 and 

C35  

20, 25, 30 and 35 

MPa 
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Grade of steel  S420,S500 420, 500 MPa 

2.3 Configuration of the Network 

2.3.1 Selection of error tolerance 

A numerical study of training and testing of the network was done keeping the error tolerance 

values as 0.1, 0.01 and 0.001.For an error tolerance of 0.1, the number of cycles required is 

less: but the results are less accurate. In the case of 0.001, even though the accuracy is high, 

the numbers of cycles required are very high. Hence, keeping in mind the number of cycles 

required for convergence together with the accuracy needed for training and testing, the error 

tolerance was chosen as 0.01. 

 

2.3.2 Selection of number of hidden layers. 

The first step in the configuration of the network is the selection of the number of hidden 

layers to be used. The parametric study is made to find out the optimum number of hidden 

layers as well as the number of nodes for the present problem. With one hidden layer, the 

architecture is able to attain the required error tolerance of 0.01 within 5000 cycles 

considered for all the combinations of neurons considered. The network with one hidden 

layers having the 14-10-3 architecture is chosen since it reaches the required error tolerance 

with the least number of cycles, which in turn will reduce the CPU time requirement.  

 

2.3.3 Selection of learning rate and momentum parameters 

For the chosen architecture of 14-10-3, the number of cycles required to reach the desired 

error tolerance of 0.01 are computed for different learning rates and momentum parameters. 

The results are shown in Table 2. From the table, it can be seen that a learning rate of 0.7 and 

momentum parameter of 0.9 are the optimum values since only this combination requires the 

minimum number of cycles  to achieve the required error tolerance. Hence, these values are 

used in the analysis.  

 

2.3.4 Training of the network 

Using the 14-10-3 architecture and the learning rate, momentum parameter  values of 0.7, 0.9 

, the network is trained and then tested. For training the network, totally 55 data set are used 

which are listed under Table 2. These data sets were generated analytically using the 

equivalent strut method.  
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Table 2. Data Set Used Training 

INPUT OUTPUT 

B l/h S420 S500 C20 C25 C30 C35 Ac Ab Acst Abst λh Asv C-F C-I Δ 

1 1 1 0 1 0 0 0 0.02 0.02 0.0068 0.000315 2 0.000195 18.8 89.34 25.467 

1 1 1 0 0 1 0 0 0.06 0.05 0.0214 0.001030 6 0.000503 61.1 186.9 34.896 

1 1 1 0 0 1 0 0 0.06 0.05 0.0214 0.001030 10 0.000503 61.1 136.80 35.769 

. . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . 

5 1.5 0 1 0 0 1 0 0.11 0.08 0.0357 0.001730 10 0.000785 826 766.7 121.133 

5 2 0 1 0 0 1 0 0.11 0.08 0.0357 0.001730 4 0.000785 1035 547 70.98 

5 2 0 1 0 0 1 0 0.11 0.08 0.0357 0.001730 8 0.000785 1035 899 142.049 

NOT: C-F = Collapse load corresponding to frame in kN , C-I= Collapse load corresponding to infill in kN, Δ= 

Displacement of frame at the top level under collapse load in mm. 

 

2.3.5 Testing of the network 

The network, after being trained, is tested with 8 data sets.. The data sets used for testing the 

network are shown in Table 3.  

Table 3.  Data Set Used Testing 

INPUT OUTPUT 

B l/h S420 S500 C20 C25 C30 C35 Ac Ab Acst Abst λh Asv C-F C-I Δ 

2 1 1 0 0 1 0 0 0.05 0.05 0.0214 0.001030 6 0.000503 148 301.1 61.383 

2 2.5 0 1 0 0 1 0 0.11 0.08 0.0357 0.001730 4 0.000785 546 217.6 28.237 

3 1.5 1 0 0 1 0 0 0.06 0.05 0.0214 0.001030 6 0.000503 322 612.4 42.905 

3 2 0 1 0 0 1 0 0.11 0.08 0.0357 0.001730 8 0.000785 658 515.2 81.409 

4 1 1 0 1 0 0 0 0.02 0.02 0.0068 0.000315 2 0.000195 101 281.3 11.115 

4 1.5 1 0 0 1 0 0 0.06 0.05 0.0214 0.001030 2 0.000503 429 394.3 46.650 

5 2 0 1 0 0 1 0 0.11 0.08 0.0357 0.001730 8 0.000785 1035 899 142.049 

5 2.5 0 1 0 0 0 1 0.15 0.12 0.0510 0.002500 15 0.001130 1795 700.6 110.669 

 

3. RESULTS and DISCUSSION 
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The collapse load and displacement predicted using ANN is compared with the actual values 

in Fig.1. In these figures, the diagonal lines represent a one to one correspondence, that is, 

when the predicted and the actual values are identical. 

The results clearly show that for the frame and infill failure, the collapse load values 

predicted using neural network vary only marginally (the maximum variation is only 4%) 

from the actual values for the data formed using equivalent strut method. In the case of the 

displacement of the frame under collapse load, the predicted values using neural network 

vary only marginally (maximum of 5%) from the actual values, be it based on experiments or 

equivalent strut method. It can be stated that overall the prediction is very good.  

 

 

Figure 1. Comparison of predicted and actual values. 

 

4. CONCLUSION 

The conventional analysis of infilled frames is complex due to the large number of 

parameters and the non-linear behaviour involved. Hence, the practice is to ignore the 

contribution from the infill and analyse the structure as a bare frame. However, it is well 

known that the infill affects the behaviour of the structure significantly. In this context, 

Artificial Neural Network is increasingly used effectively as a tool for the analysis of infilled 

reinforced concrete frames. In this paper, a multilayer feed forward network with back 
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propagation algorithm has been adopted to model a five storey infilled frame with number of 

bays ranging from one to five. The training patterns were generated using the equivalent strut 

method with different modes of failures in the frame and infill to arrive at the collapse load 

for the infill and frame as well as the displacements. The performance of the network has 

been demonstrated by comparing the output with the analytically generated values. Based on 

the investigation, it can be stated that ANN models can predict the behaviour of infilled 

frames efficiently. 
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