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Abstract  

In this study, infilled planar frames and confined reinforced concrete section have been 

analysed using Artificial Neural Network (ANN). ANN architecture was chosen in which 

multi layer, feed forward, and back propagation algorithm was used.  The training data of 

infill frame used were provided by a finite element model in which non-linearity of materials 

and the structural interface were taken into account under increasing lateral load. Using the 

proposed analytical model (layered model) were generated the training data for confined 

reinforced concrete section. Analytical technique uses realistic material models for confined 

and unconfined concrete. After completing the training phase, verification of the performance 

of the network was carried out using old (included in training phase) and new (not included in 

training phase) patterns. The controls conducted in the test phase. The findings of this 

exercise show that the ANN algorithm can be successfully and easily used within reasonable 

accuracy in order to decrease computational time in finding infill frame and the moment-

curvature relationships of reinforced concrete sections.    

 

Keywords:. Artificial Neural Network, Finite Elements Method, Infilled Frame, Confined 

Reinforced Concrete Section, Moment-Curvature  

 

1. INTRODUCTION 

The mathematical models have been widely applied for the analysis of infilled frame. Holmes 

M (1961) modelled the infill effect occurring in an infilled frame without considering the 

effects on the interface between frame and infill. In studies conducted by Smith BS (1962), 

the approach of diagonal compression strut was dealt with in a more detailed way. Using a 

finite element model, Mallick DV and Severn RT (1967) attained the results without 

considering the shear effect on the infill frame interface. With a program they prepared. 

Infilled planar frames have been analysed using artificial neural network by Bağcı and 

Altintaş (2006). The layered model for confined reinforced sections was first used by Pavriz 

et al  (1991). Moment-curvature relationships of confined concrete sections were investigated 

by Ersoy U and Özcebe G (1997).  For some other examples of ANN applications, the reader 
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is referred to (Jadid MN and Fairbairn DR  (1996),  Lee et al (1992), Avdelas et al (1995), 

Karlık et al (1998).  

In this study, the stiffness, moment and shear force values on frame for five different height 

of infill wall are calculated using finite elements method (FEM). The behavior values of 

confined reinforced concrete sections subjected to flexure and axial load are obtained by 

using analytical solution (layered model). The calculated key values are used in training a 

multi-layer, feed forward, back propagation artificial neural network (ANN). The outcomes 

of training phase were then tested using the data set reserved for this the network purpose. 

The findings of this exercise have shown that the ANN algorithm can be successfully and 

easily used within reasonable accuracy in order to decrease computational time in infilled 

frame and confined section problems.    

 

2. PARAMETRIC STUDIES 

Dimensions of infilled frame given by Fiorato AC and  Sözen M (1973) in Fig. 1 are shown, 

and the materials properties are listed in Tab. 1. The lateral load (P) was applied at the top left 

hand corner of the frame in Fig. 1a in 20 increments of 10 kN each.  

 

Figure 1a. Frame-infill wall   1b. Mesh model of with full infill wall 
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Table 1.  Properties of material 
 

 Modulus of 

elasticity 

(kN/m
2
) 

Compression 

Strength 

(kN/m
2
) 

Tension Strength 

(kN/m
2
) 

Poisson 

Ratio 

Frame 2.85x10
7
 3.1x10

4
 3x10

3
 0.2 

Infill 1.7x10
7
 3.1x10

4
 2.8x10

3
 0.2 

The wall was modelled mesh of quadrilateral-shaped isoparametric plane stress elements as 

shown in Figure 1b. The results of a numerical study are given in Tab. 2, with respect to 

whether the infill fills the space among the frame. Infill height is h with  being ranging 

from 0 and 1 (=1, =0.8, =0.6, =0.4, =0.2 and bare).   

 

Table 2. Results of FEM 

 

Infill 

height 

Load-

P 

(kN) 

Stiffness 

(infill / no 

infill) 

Left 

column 

shear 

force 

/ lateral 

load 

Left 

column 

moment 

(Infill / no 

infill) 

Infill 

height 

Load-

P 

(kN) 

Stiffness 

(infill / no 

infill) 

Left 

column 

shear force 

/lateral load 

Left 

column 

Moment 

(Infill / no 

infill) 

h 10 5,65700 0,19000 0,19000 0,4h 10 1,3140 0,51400 0,87900 

20 5,65700 0,19000 0,19000 20 1,2570 0,54200 0,91900 

30 5,65700 0,19000 0,19000 30 1,2170 0,55000 0,93800 

40 5,65700 0,19000 0,19000 40 1,2050 0,55200 0,94700 

50 5,57100 0,19000 0,19000 50 1,2000 0,56000 0,94700 

. . . . . . . . 

. . . . . . . . 
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It has been seen that the effect of infill gets clear only when it reaches at 0.4 for the value at 

the initial step of loading, though the stiffness of, infilled frame reaches at 5.7 fold, a rather 

high number, local failures occurring in the infill as a result of increasing dimensionless load, 

leads to a decrease in the overall stiffness of the system.  

Shear strength of the column increases with the height of infill. When the height of infill 

reached at the value of 0.8h, it was seen that the shear force of the column was 50 % higher 

than the shear force it carries when it was a bare frame. In this case, “short column” verifies 

its effect. When the height of infill was organised at the height of storey, it was seen that it 

was useful in term of shear strength of column. 

 Input parameters are lateral load (P) and height of infill (h) values. Output parameters are 

stiffness  (infill /no infill), shear force / lateral load and moment (infill / no infill) at the 

loaded column. As it is known, in neural network applications, the input values and output 

values can be reduced to the values between 0-1. That is the normalization process, which is 

done in this work dividing P’s by 220 and dividing h’s by 1.1h.  The output values were 

also divided by 5.7 stiffness ratio, 0.7 shear force ratio and 1.1 moment ratio, which were the 

highest values that we used in our application. Training was performed for the heights of wall 

h, 0.8h, 0.6h, 0.4h, 0.2h and bare and for loads of frame 10, 40, 70, 110, 150,190. As known, 

the general aim in the training process is to teach the relations between input and output 

values to the program and to obtain good answers to different input values with the possible 

lowest error rates.  Values obtained from the numerical procedure (FEM)  are used in the 

network training. A special code was used for ANN exercise by Karlık, B et  al (17). It is 

adapted and fitted to our application with some changes. ANN architecture with multi-

layered, forward feeding and backward propagation algorithm was chosen for the training. 

The ANN architecture used is a 2:9:9:3 multi-layer architecture as shown in Fig. 2. Exact and 

ANN values of output are compared in Tab. 3 for various h and P values. For these training 

values, the ANN algorithm produced results with average error 




outputofnumber

ANN/ANNFEM

  less 

than 0.2 %. The maximum value for FEM / ANN is about 1.0351 in 0.4h infill height and 70 

kN load value. 
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Figure 2.  Network Architecture for infilled frame 

 

 

Table 3. The results of ANN and FEM  in training 

Infill 

Height 

Lateral 

load 

kN 

Solution 

Method 

Stiffness ratio 

(Infill / no 

infill) 

FEM/ 

ANN 

Left column 

Shear force/lateral 

load 

FEM/ 

ANN 

Left column 

Moment 

ratio 

(Infill / bare) 

FEM/ 

ANN 

h 

10 

FEM 

ANN 

5.65699 

5.67016 

0.9977 

0.18999 

0.19030 

0.9984 

0.19000 

0.18543 

1.0246 

40 

FEM 

ANN 

5.65699 

5.58108 

1.0136 

0.18999 

0.18992 

1.0004 

0.19000 

0.19688 

0.9650 

70 

FEM 

ANN 

4.77100 

4.79018 

0.9960 

0.21499 

0.21580 

0.9963 

0.25199 

0.24728 

1.01.91 

110 

FEM 

ANN 

3.97100 

3.92982 

1.0105 

0.28000 

0.28110 

0.9961 

0.34500 

0.34998 

0.9858 

150 

FEM 

ANN 

3.66800 

3.67685 

0.9976 

0.31999 

0.32458 

0.9859 

0.39299 

0.39100 

1.0051 

190 

FEM 

ANN 

3.51399 

3.50218 

1.0034 

0.35999 

0.36621 

0.9830 

0.42000 

0.42245 

0.9942 

In Fig. 3, the mean square errors (MSE) in training versus iteration numbers are shown for 

problem. After 1600 iterations, the mean square errors dropped drastically.  For more than 

15000 iterations, our architecture 2:9:9:3 used in the analysis possesses the lowest total error 

values.  
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Figure 3.  Mean Square Errors (MSE) based on iteration numbers for infilled frame 

Different input values were applied to the program for testing the neural network and the 

results were obtained in milliseconds. Testing was performed for height of wall h and for load 

values of frame 20, 60, 100, 140, 180. In Tab. 4, we compare the test phase results of ANN 

and FEM.  

 

Table 4. Test Phase Results for infilled frame 

Height  

of Infill 

wall 

Load 

P 

kN 

 

Method 

Stiffness 

ratio 

(Infilled / 

no infill) 

FEM 

/ 

ANN 

Left 

column 

shear force 

/lateral 

load 

FEM 

/ 

ANN 

Left  

Column 

Moment 

ratio 

(infilled/ 

no infill) 

FEM 

/ 

ANN 

h 

20 
FEM 

ANN 

5,65700 

5,64500 
1.0021 

0,19000 

0,18600 
1.0215 

0,19000 

0,19120 
0.9938 

60 
FEM 

ANN 

5,18800 

5,22100 
0.9937 

0,19500 

0,19700 
0.9898 

0,21400 

0,2134 
1.0028 

100 
FEM 

ANN 

4,1140 

4,2550 
0.9669 

0,27000 

0,27130 
0.9953 

0,32600 

0,31600 
1.0316 

140 
FEM 

ANN 

3,73100 

3,68000 
1.0138 

0,31000 

0,3088 
1.0038 

0,38000 

0,37290 
1.0190 

180 
FEM 

ANN 

3,54200 

3,53400 
1.0022 

0,35000 

0.3485 
1.0043 

0,41400 

0,41485 
0.9998 
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The average % error (




outputofnumber

ANN/ANNFEM

) obtained is obviously about 0.269. The 

maximum value for FEM / ANN is about 1.0316 in 100 kN load value. From an engineering 

point of view, these errors are considerably low. The other parametric study has been 

conducted to observe the effect of different variables on behavior of confined reinforced 

section shown in Fig. 4.  

 

 

Figure 4.  The cross-section considered in analyses. 

 

Variables selected to incorporate in the expression of moment-curvature are compressive 

strength of concrete (fck),  the ratio of the axial load to the axial load capacity (N/No), yield 

strength in transverse reinforcement (fsh), space of transverse reinforcement (s), diameter of 

transverse reinforcement (Ø), ratio of longitudinal steel (), yield strength of longitudinal 

steel (fyk) as shown in Tab. 5. Where TY, TH, CvC, CoC , , M   are yield in tension, 

hardening of reinforcing in tension , cover crushing, core crushing, strain at maximum 

moment, and maximum moment, respectively. 

The results obtained  from Tab.5 demonstrates no very significant effect on Moment capacity 

from compressive strength (fck)  in case of pure bending (N=0). The compressive strength 

becomes effective with increasing axial load. Maximum moment capacity shows changes of  

±25% due to  ±25% compressive strength variation. The increasing compressive strength 

causes the decrease in ductility.    

As level of the axial load (N/No) on the cross-section increases, ductility decreases. Increase 

in ductility with decreasing axial load is very significant. It is interesting to note that, 

although the section considered is well confined, the behavior becomes very brittle under 

high levels of axial load. The upper limits imposed on axial loads in seismic codes results 

from such considerations. 

Table 5. The results according to different variables of  confined concrete  section 
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It is seen that yield strength in transverse reinforcement (fsh) has no effect on behavior for  

all levels of axial load. The spacing of the lateral reinforcement (s) in the confined section  is  

ineffective on behavior  at low level of axial load. The maximum moment capacity and 

ductility increase when spacing of the lateral reinforcement is reduced with increasing axial 

load. As ductility increases with diameter of transverse reinforcement (Ø), it has no very 

effect on moment capacity. The crushing of core concrete delays with increasing diameter of 

transverse reinforcement. The diameter of transverse reinforcement becomes effective with 

the increasing axial load. The quantity of  longitudinal reinforcement (ρ) has an important 

effect on behavior of the confined section.  Maximum moment capacity causes increasing 

10% due to a the quantity of  longitudinal reinforcement variation 30%.  The quantity of  

longitudinal reinforcement has very significant effect on behavior at low level axial load. The 

moment capacity decreases  with the higher axial load . The quantity of  longitudinal 

reinforcement is ineffective on ductility. The yield strength of  longitudinal bar (fyk) is 

effective parameter in case of pure bending. Maximum moment capacity causes changing 

±10% due to a yield strength of  longitudinal reinforcement variation ±30%.   

In this study , a neural network program which was written by Karlık et al. (1998) in 

PASCAL was used . Seven variables for input and six variables for output values were 

considered in the application. As it is known, in neural network applications, the input values 

and output values can be normalized to the values between 0-1. It is seen that the best results 

were obtained  with learning rate  of 0.7, and momentum value µ of 0.9. The number  of 

nodes in the hidden layer was changed for new trials. 1000 iterations were performed for each 
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node number between 1 and 0, and the errors were obtained from the program per 100 

iterations. The chances in % error values of 1000 iterations due to the number of hidden layer 

nodes are shown in Fig 5. Finally, the lowest errors were obtained in the order of  7:12:13:6 

which means 7 input values, 12 and 13 nodes in hidden layers and 6 output value. Thus, the 

network architecture would be as in Fig 6 

 

Figure 5.  The error changes due to the number of nodes in the hidden layer 1000 iterations. 

 

The training iterations were increased to 5000. So, we obtained as low as 0.07% average 

errors, which is reasonably good for ANN applications. The change in errors can be seen in 

Fig. 7..    

 

 

 

 

 

 

 

 

Figure 6.  ANN  architecture for confined sections 
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Figure 7. The error change at ANN architecture (7:12:13:6) for confined sections 

 

ANN values of output are compared in Tab. 6. The average error between analytical and 

ANN ( solutionofnumber

ANN/ANNAnalytical

) is produced less than 0.2 %. The maximum difference 

(Analytical / ANN)  for  TY, TH, CvC, CoC, and M is about 0.965, 0.978, 1.039, 0.961 , 

0.962 ,  and 0.976 , respectively. From an engineering point of view, these errors are 

considered low. 

Table 6. Training process and results for confined sections 

 

A comparison of test and analytical values is given in Tab. 7. The average  error 

( solutionofnumber

ANN/ANNAnalytical

) obtained is obviously about 0.33%. The maximum difference 

(Analytical / ANN)  for  TY, TH, CvC, CoC,  and M is about 0.967, 0.966, 0.972, 0.968 , 

0.991 ,  and 0.992 , respectively. From an engineering point of view, these errors are 

considered low.  
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Table 7. Testing  process and results for confined sections 

 

4. CONCLUSION 

In this paper, an alternative numerical and analytical technique, an ANN algorithm is used in 

the analysis of infilled frame and confined reinforced section. Neural simulation of numerical 

and analytical procedure is given in this study. To reduce the calculation time of the 

microprocessor of system, a new computer program is used by the ANN method, which gives 

answer in milliseconds. ANN architecture was chosen in which multi layer, feed forward, and 

back propagation algorithm is used.  The training data of infill frame are provided by a finite 

element model in which non-linearity of materials and the structural interface were taken into 

account under increasing lateral load. For the inelastic static analysis, an incremental iterative 

procedure is adopted. Using the proposed analytical model (layered model) are generated the 

training data for confined reinforced concrete section. Developed model is using layered 

modeling technique and capable of taking into account; crushing of cover and core concrete, 

strain hardening of steel and effect of confinement on core concrete. After completing the 

training phase, verification of the performance of the network was carried out using old 

(included in training phase) and new (not included in training phase) patterns. The controls 

conducted in the test phase. 

 ANN algorithms can not of course replace totally the conventional numerical and analytical 

techniques, since they need some key values for training. However, in the analysis infilled 

frame and confined reinforced sections, they can be implemented as an efficient 

supplementary tool reducing drastically the computational cost. Modeling process in neural 

network is more direct, since there is no necessity to specify a mathematical relationship 

between input and output variables. The trained ANN is able to produce quick results in the 

analysis of infilled frame and confined reinforced section with the same degree of accuracy as 

numerical and analytical model. Therefore, the trained ANN may be used in practice for the 

design of infilled frame and confined cross section as on alternative to the time consuming 

numerical and analytical procedure.  
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