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Abstract  

Heart disease is a cardiovascular disorder that is most widespread cause of death in many 

countries all over the world. In this work, k-Nearest Neighbor machine learning tool was used 

to classify Electrocardiography (ECG) signals and satisfactory accuracy rate was achieved in 

classification of ECG signals. The model automatically classifies the ECG signals into 5 

different kinds: normal, Premature Ventricular Complex (PVC), Atrial Premature Contraction 

(APC), Right Bundle Branch Block (RBBB) and Left Bundle Branch Block (RBBB). The 

best averaged performance over randomized percentage-split is also obtained by k-Nearest 

Neighbor (k-NN) classification model. Some conclusions concerning the impacts of features 

on the ECG signal classification were obtained through analysis of different parameters of 

kNN. The analysis suggests that kNN modeling is satisfactory performances in at least three 

points: high recognition rate, insensitivity to overtraining and computational time it takes for 

classification. The combined model with DWT and k-NN achieves the good. Obtained result 

shows that the suggested model have the potential to obtain a reliable classification of ECG 
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signals, and to support the clinicians for making an accurate diagnosis of cardiovascular 

disorders. 
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1. INTRODUCTION 

Heart diseases are a major cause of mortality in most of the countries around the world.  In 

2008, approximately 17 million people die each year due to this disease or 48 % of all deaths 

in 2008. It is estimated that this number will even grow. In 2030, it is estimated that 23.6 

million people will die from cardiovascular diseases (WHO | Cardiovascular diseases 

(CVDs)). In Bosnia and Herzegovina, 35000 or 66% of all deaths were due to cardiovascular 

diseases (BiH). In Turkey, almost 31500 people (49 % of total mortality) died from 

cardiovascular diseases (Turkey). Because of this many researchers have conducted in this 

field in the world. 

The Electrocardiography is noninvasive tool for detecting the electrical activity that 

originates in the heart.  Expression cardiovascular arrhythmia is used to describe any irregular 

electrical activity originating from heart.  Electrocardiogram (ECG) is one of the most 

significant apparatus for diagnosis of cardiovascular diseases. The ECG signal classification 

into different cardiovascular disease groups is a complex pattern recognition problem. These 

signals are highly nonlinear also. Therefore, different techniques such as signal processing 

techniques, machine learning methods, were used for this purpose.   

The aim of this study is to introduce a method for detection of heart diseases in ECG 

recordings. We propose a method for differentiating normal heartbeats (N) from left bundle 

branch blocks (LBBB), right bundle branch blocks (RBBB), atrial premature contractions 

(APC) and premature ventricular contractions (PVC) heartbeats (Clifford, Azuaje, & 

McSharry, 2006). In this study, k-Nearest Neighbor (k-NN) classifiers combined with 

statistical features extracted from DWT is used to classify ECG signals. To contribute to the 

quantification of the routine ECG examination, a methodology has been developed for ECG 

signal classification which consists of three steps. In the first step, the ECG signals are 

decomposed into different frequency bands using discrete wavelet transform (DWT). In the 

second step, statistical features extracted from these subband decomposed ECG signals to get 

better accuracy for diagnosis of cardiovascular diseases. In the last step, an unknown ECG 

signal is classified as normal heartbeats (N) from left bundle branch blocks (LBBB), right 

bundle branch blocks (RBBB), atrial premature contractions (APC) and premature ventricular 

contractions (PVC) heartbeats using k-NN classifier.  
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The remainder of the paper is organized as follows. In the next section, information is given 

about the materials and datasets used in this research. This section also explains methods 

applied in each step of the ECG signal classification process. Also, three different k-NN 

methods are discussed and compared. Section 3 gives discussion on the results achieved in 

this study. Finally, the conclusions are summarized in Section 4. 

 

2. MATERIALS AND METHODS 

2.1. Database 

The ECG signals for training and testing datasets are obtained from MIT-BIH arrhythmia 

database. Records were obtained by the Beth Israel Hospital Arrhythmia Laboratory between 

1975 and 1979. This database is available online24. It contains two leads for upper and lower 

ECG signals for all 48 records from 47 different patients. Patients are 25 men aged 32 to 89 

and 22 women aged 23 to 89. Two records (201 and 202) came from same patient. Each of 

these records is 30 minutes long with sampling frequency of 360 Hz. Each beat has been 

labeled by at least two cardiologists. There are more than 109,000 labeled ventricular beats 

from 15 distinct heartbeat types. There is an immense diversity in the amount of examples in 

each heartbeat category. The biggest category is “Normal beat” and the smallest is 

“Supraventricular premature beat” (with only two examples) (MIT-BIH Arrhythmia Database 

Directory).  

 

2.2. Discrete wavelet transform 

The DWT is a signal-processing technique having a lot of applications in science and 

engineering. The wavelet transform (WT) permits the non-stationary signals discrimination 

with diverse frequency characteristics [14]. It disintegrates a signal into wavelets (group of 

simple functions. These wavelets result from a single function ψ, called the mother wavelet, 

by dilations and translations as (Daubechies, Mallat, & Willsky, 1992; Vetterli & Herley, 

1992). 
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where a is positive number. Typically, a is 1 for the mother wavelet and growing a > 1 dilates 

the wavelet, getting bigger on the interval over which it takes non-zero values.  

                                                           
24 http://physionet.ph.biu.ac.il/physiobank/database/html/mitdbdir/mitdbdir.htm 
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The discrete wavelet transform (DWT) is used to disintegrate a signal. It uses filters to extract 

out of the ordinary frequency resolution components within the signal. The DWT has 

compact support in time and frequency domain (Mallat, 1999; Marchant, 2003; Semmlow, 

2004; Sornmo & Laguna, 2006). It examines the signal at different frequency bands, with 

different resolutions. It separates the signal into two parts: a coarse approximation and detail 

information. DWT uses two function sets called scaling functions and wavelet functions. 

These two sets are allied to low-pass and high-pass filters, respectively. Every phase of this 

scheme has two digital filters and scale changes by power of 2. In the process of reducing the 

sampling rate, outputs of first high-pass and low-pass filters give the detail, D1 and the 

approximation, A1, respectively. The first approximation, A1 is later decomposed and this 

process is continued. Approximation and detail records are rebuilded from the Daubechies 4 

(DB4) wavelet filter. More detailed explanation is given in (Mallat, 1999; Marchant, 2003; 

Semmlow, 2004; Sornmo & Laguna, 2006; Adeli, Zhou, & Dadmehr, 2003; Akay, 1997; 

Subasi, ECG signal classification using wavelet feature extraction and a mixture of expert 

model, 2007; Subasi, Automatic recognition of alertness level from EEG by using neural 

network and wavelet coefficents, 2005). The extracted wavelet coefficients give a firm 

illustration showing the energy distribution of the ECG signal in time and frequency.  

 

2.3. k-Nearest Neighbor (k-NN) 

k-Nearest Neighbor (k-NN) is proper mechanism for solving biomedical engineering 

problems and, particularly, in evaluating biomedical signals, because of their wide range of 

applications and usage and their potential to learn difficult and nonlinear relations.  It is very 

simple machine learning tool. The k-NN algorithm is object classification tool based on 

nearest training samples in the feature. The algorithm does not depend on any kind of 

statistical distribution of training examples. A number of distance measures are capable of 

being used in k-NN algorithm. Still, the most popular distance is Euclidean. An object 

classification is done by a mass election of its neighbors. Object is assigned to the class being 

most frequent one its k nearest neighbors. k is usually selected to be small. When k is 

selected to be 1, the object is just prescribed to the class of its nearest neighbor. Due to this, 

the algorithm is called as the k-Nearest Neighbor (Jekova, Bortolan, & Christov, 2008). In 

Our study, we used three different techniques implementing k-NN algorithm. All these three 

methods are implemented in Weka (Weka 3 - Data Mining with Open Source Machine 

Learning Software in Java). These three different techniques are called as: IBk, KStar and 

LWL. Detailed description of these three different k-NN techniques is given in (Aha, Kibler, 

& Albert, 1991; Cleary & Trigg, 1995; Frank, Hall, & McShary, 2003).  

 

3. RESULTS AND DISCUSSION  
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In this study five different heartbeat classes were analyzed. These are: N (normal heart beat), 

RBBB (Right Bundle Branch Block), LBBB (Left Bundle Branch Block), APC (Atrial 

Premature Contraction) and PVC (Premature Ventricular Complex).   

The classification abilities for three different implementations of k-NN method applied on the 

morphological ECG descriptors are estimated set obtained by processing all heartbeats from 

MIT-BIH arrhythmia database. Two statistical indices; sensitivity (Sej) and specificity (Spj); 

were computed for every heartbeat class j (N, PVC, APC, LBBB and RBBB). They are 

calculated as (Jekova, Bortolan, & Christov, 2008): 
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                                         (2)  

where TPj (true positives) represents the amount of correctly classified heartbeats of jth  class 

(e.g. RBBB classified as RBBB); TNj (true negatives) represents the amount of heartbeats 

not being part of the jth class and not classified in the jth class (e.g. PVC, APC, LBBB and 

RBBB not classified as N); FPj (false positives) is the amount of incorrectly classified 

heartbeats in the class j (e.g. PVC,APC,  LBBB and RBBB classified as N); FNj (false 

negatives) is the amount of heartbeats of class j, classified in a different class (e.g. RBBB not 

classified as RBBB)  (Jekova, Bortolan, & Christov, 2008). 66 % percentage split gave the 

best results in this research and results are given in Table 1 and their graphical representation 

is illustrated in Fig. 1.  

 

 

Table  1. ECG Signal Classification Results for k-NN Classifiers.  

 

  IBk KStar LVL 

  Se Sp Se Sp Se Sp 

N 0.897 0.897 0.891 0.897 0.891 0.908 

APC 0.909 0.995 0.848 0.991 0.879 0.99 

PVC 0.639 0.958 0.656 0.953 0.754 0.967 

RBBB 0.907 0.991 0.893 0.993 0.92 0.993 

 

LBBB 

0.951 0.975 0.971 0.978 0.931 0.969 
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Accuracy obtained for these three different k-NN methods are also compared. For IBk 

accuracy obtained is 88.24 %, for KStar accuracy is 87.91 % and for LVL, accuracy obtained 

is 88.73 %. As we can see from Figure 2, accuracies obtained LVL k-NN gave the best result. 

Beside these results, time required for classification is small compared to other two methods, 

what is showing that LVL kNN is the most appropriate k-NN method for ECG signal 

classification.     

 

Figure 1 Graphical representation of evaluation performance of k-NN classifiers 

 

 

 

 

Figure  2 Graphical representation of accuracies achieved by using k-NN classifiers 
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4. CONCLUSION 

In this study, we developed an efficient combination of classifier and signal processing 

technique, which proved by the different experiments is applicable for the classification of 

the ECG signals. This was accomplished using combination of DWT and kNN methods. 

These three kNN methods are IBk, KStar, and LVL. Because the experiments proved, the 

combination represented as LVL k-NN and DWT subbands can achieve a better performance 

than other two k-NN classifier methods over the five ECG signal patterns: normal (N), 

Premature Ventricular Complex (PVC), Atrial Premature Contraction (APC), Right Bundle 

Branch Block  (RBBB) and Left Bundle Branch Block  (RBBB). The proposed LVL k-NN 

classifier together with DWT subbands meets the requirements for five ECG signal patterns 

characterization and is able of classifying the ECG signals accuracy rate. In addition, the 

suggested LVL k-NN classifier shows guarantee as a clinically valuable method of providing 

numerical inputs to the next step of the interpretation phase of an ECG examination. This 

proves that the LVL k-NN classifier can be important for capturing and expression of 

knowledge helpful to a clinician. These results provide encouragement to develop and 

evaluate a LVL k-NN method for quantifying the level of contribution of a cardiovascular 

disorder. 
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