
283ICESoS 2016 - Proceedings Book

USING DATABASE AUDIT FOR ANALYZING ON HISTORICAL DATA

Adnan Hodžić
International Burch University

Bosnia and Herzegovina
adnan.hodzic@ibu.edu.ba

Adem Karadag
Turkey

nuhadem@gmail.com 

Abstract: Database auditing is one of the biggest issues in data security. Absence 
of information auditing drives the business applications to the lost trail of business 
procedures. To cope with auditing and in order to track operations and the actors of 
those operations in time, we need historical data or temporary database. Legitimate 
and exchange times are two important time-stamps in temporary database. In this 
paper, we show the methods to handle  database  auditing  in  business  exchange  
operations,  accurate  times,  and performers of the operations.  These strategies 
are separated in two sets; utilizing relational databases, and utilizing semi-structured 
information.

Keywords: Database Audit, Historical Data

Introduction

It is very crucial that a company no matter how big is it maintains the security of its 
information. Since there are many stealing of valuable data such as customers’ credit 
card data, designs and maybe source codes, the data should be protected all the 
time. Keeping safe your data is protecting its confidentiality, integrity, and availability. 
To ensure the data security, there should be a security plan. Authentication and 
administration can facilitate the security at a point (Mullins & Craig, 2002). However, 
there is a need to keep log  files  and  check  them  separately  from  the  database.  
Thus  database  audit  was introduced to inspect the trail maintenance. Data servers 
help to create a database audit policy to protect the database safe. In this way, 
user entries can be controlled. There will be some techniques showing how to make 
database auditing depend on historical data. This paper divided into 4 parts. In part 2 
and 3, there is literature review of historical data and auditing. The outline of auditing 
of database was described in some ways. We used a relational database (Grad, 2013) 
to represent the row, column based and log-file auditing strategies.

Database Auditing

Database auditing includes inspecting a database to control and view the actions of 
database users. In this way, auditor can see the manipulations, corruptions or glitches 
on the data. Database audit also refers to a professional database auditing resolution-
giving chance to track and inspect of any database activity involving accessing, 
login, protection breaches, user activities, insert-delete-change the data. Recently, to 
supply accurate data auditing a framework has been introduced in respect to data 
retention strategies. (Lu & Miklau, 2009) Under retention restriction a formula applied 
to audit data in the protected history. In this way database audit would be more 
accurate.



International Conference on Economic and Social Studies (ICESoS’16)

284 ICESoS 2016 - Proceedings Book

It is important to detect changes that are deviates from standard. To differentiate 
the normal behaviors on the data and have better results in audit, data mining 
techniques are generally applied.  This method can only detect the static actions of 
the user. This disadvantage can be affected by tracking all activities of user in an 
data audit system. As a result, anomaly detection method was introduced to model 
the normal behavior of the user. (Park & Lee, 2008) In this way normal behaviors can 
be easily differentiated from suspicious ones.

To teach database security and auditing and make the students have better 
understanding about it, hands –on lab studies are set (Luebbers, Grimmer, & 
Jarke, 2003) In these studies various database scenario are set to integrate theories 
of database protection into practices.

Historical Data

Historical data is the information outlining activity, conditions and trends in a company’s 
past  database.  Historical  data  is  often  archived,  and  may  be  held  in  non-volatile, 
secondary storage. Historical data can be useful in helping to predict the future of a 
company and a market, as when conducting predictive analyses.

Table 1: Operational Student Table Referenced By Student-History Table For Row-
Based Auditing

It is very significant to detect who made the changes like insertion of a new data, 
data manipulation or deletion on the database. In this way, a good data audit can 
be retrieved. The time and the user is important issue to analyze the modification of 
data. When was the action happened can be answered by valid and transaction 
times. In a study it is mentioned that valid and transaction times should assure no 
data loss. (Bhargava & Gadia, 1993)

Arranging Historical Data For Auditing On Relational Database

There are some ways to design historical data in a relational database (Margaret 
Rouse, 2015) like separated tables for recording past data and transaction log files. 
The idea of arranging separated tables for each relational database table is easy 
way to track to changes for each item. With both strategies there is no change on 
the original data tables. There are 3 ways that we represent here to supply historical 
data for auditing database. They are auditing on a row level, column level and log-
table.

Database Audit on a Row Level

Our original relational tables stay same but we create a separate table for each table 
to apply data audit. Operational  “Student” table as shown in Table 1 supplies the 
current data of each student for operations. There are 2 kinds of data type in this table; 

Student Number Name Birth Adress Registration Date Fee

445 Zeynep 10.10.1988 Ankara 15.01.2008 2400

822 Mahmut 12.09.1990 Istanbul 01.09.2010 2600

544 Ayşe 15.05.1991 Istanbul 01.09.2011 2600



285ICESoS 2016 - Proceedings Book

Regional Economic Development: Entrepreneurship and Innovation

static and operational  data.  Static  data  stays  same  or  rarely  change  like  Student  
Number, Registration date or Name. Historical or operational data continuously can 
be updated like address of the student. Static query, which is always used, already 
stays same to call the data from “Student”. Table 2 is an auditing table that includes 
all students’ data in the operational table. Two time intervenes needed for valid times. 
We need to know the beginning and ending time to sustain the life cycle of the data. 
Besides the valid time, we acquire to have operation type to diminish the complexity 
of comparison among histories of the same data and the user to make him responsible 
from the action.

History of “Student” table is shown in Table 2. It can be seen from history table that Ali 
Oz has been a student since 01.09.2005. The user Mustafa updated his fee 2 times by 
increasing by $100 each and updated address by changing it from Istanbul to Adana. 
Ali has finished the school and his record deleted from the Student table by Semih. 
Ahmet moved from Hatay to Ankara on 23.09.2008 and his record terminated on 
January 2009 by Mustafa. Zeynep’s fee was increased by $100 by Mustafa. Finally, 
Semih added two new students Mahmut and Ayşe to the Student table.

Table 2: Operational Student Table Referenced By Student-History Table  
For Row-Based Auditing

Operational table and audit table records are identical. Data is repeated in different 
rows but this is kept for the sake of historical query.

Database audit on a row level has some advantages and drawbacks. It is easier 
to apply auditing. When the user wants to insert, update or delete something from 
the operation table, the program can simply copy the all value in the record into 
the historical table. Besides, the end column should be updated with the operation. 
This operation can be achieved by the database as used in (Yang, 2009) article. 
Drawbacks can be mentioned that redundancy makes the system complicated. Also, 
calling historical data is needed to the comparison between operational table and 
auditing table by using recursive query.

Student
Number Name Birth Address

 Regist.
Date Fee Begin End

O
p User

966 Ali 21.04.1986 Istanbul 01.09.2005 2300 01.09.2005 01.09.2007 I Mustafa

966 Ali 21.04.1987 Adana 01.09.2005 2300 01.09.2007 U Mustafa

966 Ali 21.04.1988 Adana 01.09.2005 2450 01.09.2007 23.06.2008 D Semih

855 Ahmet 11.05.1986 Hatay 01.09.2006 2350 21.09.2007 01.09.2008 I Semih

855 Ahmet 11.05.1986 Ankara 01.09.2006 2350 23.09.2008 15.01.2009 D Mustafa

445 Zeynep 10.10.1988 Ankara 15.01.2008 2300 15.01.2008 15.06.2010 I Mustafa

445 Zeynep 10.10.1988 Ankara 15.01.2008 2400 15.01.2008 U Mustafa

822 Mahmut 12.09.1990 Istanbul 01.09.2010 2600 01.09.2010 I Semih

544 Ayşe 15.05.1991 Istanbul 01.09.2011 2600 01.09.2011 I Semih



International Conference on Economic and Social Studies (ICESoS’16)

286 ICESoS 2016 - Proceedings Book

SELECT S1.fee, MINS, MAXS, S1.USER, OPERATION FROM Student_HISTORY_R S1,
( SELECT S2.fee, MIN(S2.begin) MINS, MAX(S2.end) MAXS
FROM Student_HISTORY_R S2
WHERE Student Number =  966 GROUP BY fee) S3 WHERE S1.fee = S3.fee

Database Audit on Column Level

Column level audit is not including redundant data as seen in the row level audit. This 
historical table does not contain static data like birth date and registration date. The 
auditing table just sustains the changed data except primary key like student number. 
This is required to save the data in the operational table. Student history in Table 3 
keeps just the changed data and it is less redundant than the Table 2. The student 
number 966 Ali moved from Istanbul to Adana on 01.09.2007 got raised fee from 
2300 to 2450 on

01.09.2007.  Selecting  not-null  value  on  a  particular  auditing  column  in  SELECT
statement would display only the actual change. For example,

SELECT fee, begin, end, USER, OPERATION FROM Student_HISTORY_C
WHERE Student Number = 966 AND fee IS NOT NULL

The query displays the auditing of Ali’s fee. Comparing with row-based auditing on 
the same query, the SELECT statement is much less complex.

Each  record in  column-based  auditing  table  cannot  contain  more  than  one  
value  of historical data because of the uncertainty of end time of each auditing data.

Table 3: Student_History_C Table Using Column-Based Auditing

Student Number Address Fee Begin End Operation User

966 Istanbul 01.09.2005 01.09.2007 I Mustafa

966 Adana 01.09.2007 U Mustafa

966 2450 01.09.2007 23.06.2008 D Semih

855 Hatay 21.09.2007 01.09.2008 I Semih

855 Ankara 23.09.2008 15.01.2009 D Mustafa

445 Ankara 2300 15.01.2008 15.06.2010 I Mustafa

445 2400 15.01.2008 U Mustafa

822 Istanbul 2600 01.09.2010 I Semih

544 Istanbul 2600 01.09.2011 I Semih



287ICESoS 2016 - Proceedings Book

Regional Economic Development: Entrepreneurship and Innovation

Since it is less complicated column level audit is faster. Less disk space is used also. 
However, many NULL values would cause other issues when writing queries

Auditing on Log Table

A log table that tracks changes to a system are also referred audit as it gives a bunch 
of information  like  user,  data,  time  of  execution  that  can  be  used  to  audit  a  
system. Relational Database Management Systems (RDBMS)’s like audit option 
like in DB2 (IBM Knowledge Center, 2015), SQL (Stankovic, 2016) and ORACLE Servers 
(Stackowiak, Bales, & Greenwald, 2004) and facilitate database administrators to 
sustain an audit trail (Logging, Auditing, and Monitoring the Directory) and saved it in 
a log file. However, log tables are not keeping the finished time to program. To prevent 
this, there may be two ways.

Column Based Log Audit Tables for Operation Logs

We need to isolate auditing log data from the operational data. To do this, we 
make additional table for each auditing column. For instance, if ADDRESS and FEE 
columns in the STUDENT table are auditing columns, we make ADDRESS and FEE tables 
for auditing purposes as appeared in Table 4 and Table 5. There are some advantages 
about this way. First, it decreases the amount of auditing data and it makes it easier to 
analyze the tables. However, the number of independent tables may increase.

Table 4: Audit Log Table For Address

PK Student Number Adress Begin End OP User

1 966 Istanbul 01.09.2005 01.09.2007 I Mustafa

2 966 Adana 01.09.2007 U Mustafa

3 855 Hatay 21.09.2007 01.09.2008 I Semih

4 855 23.09.2008 15.01.2009 D Mustafa

5 822 Istanbul 01.09.2010 I Semih

6 544 Istanbul 01.09.2011 I Semih



International Conference on Economic and Social Studies (ICESoS’16)

288 ICESoS 2016 - Proceedings Book

Table 5: Audit Log Table For Fee

PK Student Number Fee Begin End Op User

1 966 2300 01.09.2007 U Mustafa

2 966 2450 01.09.2007 23.06.2008 D Semih

3 445 2300 15.01.2008 15.06.2010 I Mustafa

4 445 2400 15.01.2008 U Mustafa

5 822 2600 01.09.2010 I Semih

6 544 2600 01.09.2011 I Semih

One Log Audit Table for Operation Logs

To join audit data into one spot, we coordinate each auditing column from all 
operational tables into one single auditing log table. The audit log table makes out 
of name of table and column, Student ID of the record in the operational table, 
changed value, begin time, operation that causes the change and name of user who 
controls this data.

Case of single audit log table of the database containing Student and Faculty 
tables is appeared in the Table 6. All changes made on the tables is built into the 
single audit log table. A solitary insertion of Student number 966 into Student table 
makes the insertion into audit log table two times; one log record for ADDRESS 
and another for Fee if Student table has two auditing columns. Upgrading on an 
auditing trait will embed an auditing record into the log table. You can see same 
action like in insertion; deletion of a record will be logged twice into audit log table 
if there should be an occurrence of two auditing columns, for example, deletion of 
Student 966 in Table 6.

Table 6: One Audit Log Table For Every Table; Student And Faculty In Database

PK
Student
Number Table Column Value Begin End Op User

1 966 Student Address Adana 01.09.2007 I Mustafa

2 966 Student Fee 2450 23.06.2008 D Mustafa

4 855 Student Address Hatay 21.09.2007 01.09.2008 I Semih

5 855 Student Fee 2350 23.09.2008 15.01.2009 D Semih

6 445 Student Address Ankara 15.01.2008 15.06.2010 I Mustafa

7 445 Student Fee 2300 15.01.2008 I Mustafa

8 445 Student Fee 2400 01.09.2010 13.04.2011 U Semih

9 822 Student Address Istanbul 01.09.2010 I Semih



289ICESoS 2016 - Proceedings Book

Regional Economic Development: Entrepreneurship and Innovation

10 822 Student Fee 2600 01.09.2010 I Mustafa

11 544 Student Address Istanbul 01.09.2011 I Mustafa

12 544 Student Fee 2600 01.09.2011 I Semih

13 221 Faculty Manager 108 01.01.2012 I Semih

14 103 Faculty Manager 120 21.06.2013 U Mustafa

Audit log table is expansive if there are numerous auditing columns from various 
tables. Separating the data in columns and having a solitary audit log table for every 
subsystem are suggested. Both methodologies require additional handling for each 
operation at the databases, particularly, the auditing data. Of course, database 
motors have as of now controlled log tables. With this additional handling, the general 
framework will be slowed down.

Conclusion

Operation tables and auditing tables should be apart from each other. In this way 
database engine could be much faster in running the auditing query when we compare 
a table includes both operational and auditing data. Overhead of checking which 
partition will be used against the query is added to execution time. Also, database 
administrator would manage the database management system easier.

There are many options for auditing database. Some solutions are appropriate for 
relational databases. On the other hand, marketing databases are mostly using semi- 
structured databases.

Database auditing is one of the crucial issue for a company to maintain its’ not 
only security-related concerns but also performance and reliability. Monitoring and 
recording of selected user database actions determine the future of the company’s 
business. Overall, security and reliability of the data can be sustained by a good 
database auditing method

References
 

•	 Bhargava, G., & Gadia, S. K. (1993). Relational Database Systems with Zero 
Information Loss. 5 (1), 76- 87.

•	 Grad, B. (2013). Relational Database Management Systems: The Business 
Explosion. IEEE Annals of the History of Computing archive , 35 (2), 8-9.

•	 IBM Knowledge Center. (2015, January 15). Retrieved April 30, 2016, from ibm.
com: http://www.ibm.com/support/knowledgecenter/#!/SSEPGG_8.2.0/
welcome.html

•	 Lu, W., & Miklau, G. (2009). Auditing a Database Under Retention Restrictions. 
IEEE Inter. Conf. on Data Eng. (pp. 42-53). ICDE.

•	 Luebbers, D., Grimmer, U., & Jarke, M. (2003). ystematic Development of Data 
Mining- Based Data Quality Tools. proc. of the 29th VLDB Conference, (pp. 548 
- 559). Berlin.

•	 Margaret Rouse. (2015). Relational database management systems (RDBMS). 
Retrieved April 5, 2016, from TechTaregt: http://searchsqlserver.techtarget.com/
definition/relational-database-management-system



International Conference on Economic and Social Studies (ICESoS’16)

290 ICESoS 2016 - Proceedings Book

•	 Mullins, & Craig. (2002). Database administration: the complete guide to 
practices and procedures. Addison-Wesley.

•	 Park, N. H., & Lee, W. S. (2008). Anomaly Detection over Clustering Multi-
dimensional Transactional Audit Streams. IEEE International Workshop on 
Semantic Computing and Applications (pp. 78-80). IWSCE.

•	 Stackowiak, R., Bales, D., & Greenwald, R. (2004, August 26). Oracle Docs. 
Retrieved April 30, 2016, from docs.oracle.com: http://download.oracle.com/
docs/cd/B14099_19/idmanage.1012/b14082/logging.htm#i126963

•	 Stankovic, I. (2016, April 5). SQL Server Audit (Database Engine). Retrieved April 
30, 2016, from msdn.microsoft.com: https://msdn.microsoft.com/en- us/en%20
us/library/cc280386.aspx

•	 Yang, L. (2009). Teaching Database Security and Auditing. SIGCSE, (pp. 241-245).


