ELECTRICAL, STRUCTURAL AND THERMAL PROPERTIES OF NANO-CERAMIC (BI2O3)1-X-Y(DY2O3)X(SM2O3)Y AND (BI2O3)1-X-Y(DY2O3)X(TM2O3)Y TERNARY SYSTEM

M. Kış Erciyes University, Kayseri, Turkey mkis@erciyes.edu.tr

B. Erdoğan Erciyes University, Kayseri, Turkey bilge_erdogan_@hotmail.com

S. Durmuş Dumlupınar University, Kütahya, Turkey semradurmus@dpu.edu.tr

M. Arı Erciyes University, Kayseri, Turkey ari@erciyes.edu.tr

Keywords: Solid oxide fuel cell (SOFC); Ceramic electrolyte; Oxygen ionic conductivity; X-ray diffraction; Thermal analysis; 4-point probe technique.

ABSTRACT

Crystal structure and temperature depence of Sm_2O_{3-} Dy₂O₃ and Tm₂O₃₋ Dy₂O₃ dopedbismuth trioxide (Bi₂O₃) tenary solid solutions have been investigated. The (Bi₂O₃)_{1-x-y}(Dy₂O₃)_x(Sm₂O₃)_y and (Bi₂O₃)_{1-x-y}(Dy₂O₃)_x(Tm₂O₃)_y ternary systems were obtained with x=20,10 mol % and y=20,10 mol % dopant concentrations. The temperature dependence of the electrical properties of δ -phase of solid solution samples were measured by d.c. four point probe technique. The crystallographic structure of the samples were characterized by X-ray powder diffractions (XRD). The unit cell parameters were determined from the powder diffraction patterns. Thermal behavior and stability of the phases were investigated by Differential Thermal Analysis-Thermo Gravity (DTA-TG).