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Abstract 
 
Direct Torque Control (DTC) is a preferred method for its fast torque response and easy 
implementation in induction motor (IM) applications. However varying switching frequency 
and current harmonics are the drawbacks of the method. There are many industrial 
applications already using DTC. In this study, a novel switching table is proposed to reduce 
current harmonics based on torque-flux plane that can be applied to current motor drives with 
software modification, rather than a hardware advancement. The study is illustrated with 
Simulink model and motor output results. 
 
Keywords:  Direct Torque Control, Torque-Flux Plane, Total Harmonic Distortion, Vector 
Selection Table. 
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INTRODUCTION 

Today Field Oriented Control (FOC) and Direct Torque Control (DTC) are the preferred 
vector control method to drive Induction motor (IM) among industrial applications (Farid, 
Sebti, Mebarka, & Tayeb 2007; Mumcu, Aliskan, Gülez, & Tuna, 2013). The most well-
known superiority of DTC over FOC is, it has fast torque and flux control property even with 
its simplicity. Other advantages of DTC are being precise and free from rotor parameters. The 
basic DTC algorithm aims to control both torque and stator flux linkage of motor by selecting 
appropriate voltage vector and use stator resistance as motor parameter, voltage and current 
measurement as feedback, that’s how it works independent of rotor parameters and without 
need for speed or position feedback. (Takahashi, & Noguchi, 1986, Depenbrock, M. 1988).  
One disadvantage of this method is high harmonic distortion causing acoustic noise and EMI 
interference.  
 
In order to enhance DTC method, there are several methods proposed in the literature. Kenny 
& Lorenz (2003) used deadbeat control, Ahammad, Beig & Al-Hosani (2013) preferred 
sliding mode control, Kumar, Gupta, Bhangale and Gothwal (2007) studied neural network 
based DTC. Hafeez, Uddin, Rahim & Hew (2013) used self-tuned neuro-fuzzy control. While, 
all these methods improves side effects of the DTC, they also lead the control technique 
become more complicated and cause a longer adaptation time delay to adopt to the current 
motor drive systems. Some of the developed control methods can be expressed with switching 
tables with the purpose of easy implementation (Casadei, Serra, Tani, & Zarri, 2013; Ludtke, 
& Jayne, 1995; Gulez,   Adam, & Pastaci, 2007). Switching table based DTC (ST-DTC) is not 
complicated to apply which leads less application time delay on motor drive systems.  
 
Regarding the phase of developing new algorithms for DTC, induction motor voltage vectors, 
which are in three phase system, is transformed to α, β plane as in Fig. 1, so as to illustrate the 
voltage vector selection in a two dimensional plane. In this plane, the stator flux linkage is 
defined as a vector and the variation of it is defined as the flux ripple. And, the torque is 
visualized with the magnitude of both rotor and stator flux vector and the angle between them. 
In order to decrease the torque ripple, it is aimed to move the stator and rotor flux vector more 
harmoniously and smoother.  

 
Fig. 1 Voltage vector representation on α-β plane (Buja,  &  Kazmierkowski. 2004). 
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The existing voltage vectors, which are necessary to drive the inverter in DTC algorithm, can 
be seen in α-β plane in Fig.1. In this study, the main focus is to define motor operating point 
on torque-flux plane, instead of α-β plane, which gives the designer a different perspective in 
order to develop/consider different design options for a control concept. In the following 
sections, ST-DTC algorithm and our proposed method which is basically a new interpretation 
of the switching table will be compared; the simulations and the comparison of the simulation 
results will be discussed respectively.  

 

BASIC ST-DTC SCHEME 

DTC is a feedback control method where the voltage vectors and phase currents applied to the 
induction motor are required as feedback signals. Stator flux linkage and motor torque are 
calculated so that they can be applied in the next time interval to the motor in algorithm. 
 
Voltage vector selection as the stator flux linkage is determined by the equation (1). In DTC 
algorithm, defining inverter control signals is basically the main core in order to keep the 
motor torque and the flux linkage around the control reference points given by the user. 
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Rotor and stator flux vectors are interrelated in induction motor, that a change in stator flux is 
followed with a delay by the rotor flux, both are crucial to control motor torque. Thus, torque 
at the induction motor output is determined as a function of both flux magnitudes in equation 
(2). 
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In equation (2) the terms are expressed as: 

Te: the induction motor output torque,  
ψS: stator flux magnitude, ψr: rotor flux magnitude,  
γ: torque angle between stator and rotor flux,  
P: Number of poles, Ls: Stator inductance,  
Lr: Rotor inductance, Lm: Mutual inductance,  
σ: leakage factor. 
 

Conventional ST-DTC scheme is depicted in Fig.2. In this method, the difference between 
reference and calculated flux linkage are processed by a two level hysteresis comparator. 
Similarly, the difference between reference torque and the calculated torque values are 
processed by a three level comparator. The outcomes of these are inputs for voltage vector 
selection function. In conventional ST-DTC method, voltage vector selection is determined by 
table I on which present stator flux linkage sector (Fig.1), digitized torque and stator flux 
linkage error are the inputs. As the vector selection table I denotes, when torque values reach 
to hysteresis comparator set values, in order to keep torque and flux around the reference 
points and to prevent violation of limits, voltage vectors are changed between V0 and V7. 
Thus, all possible voltage vectors regarding DTC algorithm can be seen on Fig. 1. 
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Fig. 2 Conventional ST-DTC scheme. 

 

TABLE 1. DTC VOLTAGE VECTOR SELECTION TABLE [12] 

dDψ dTe S1 S2 S3 S4 S5 S6 

1 

1 V2 V3 V4 V5 V6 V1 

0 V7 V0 V7 V0 V7 V0 

-1 V6 V1 V2 V3 V4 V5 

-1 

1 V3 V4 V5 V6 V1 V2 

0 V0 V7 V0 V7 V0 V7 

-1 V5 V6 V1 V2 V3 V4 

  

To understand the conventional ST-DTC algorithm, table I can be explained in detail. S1-S6 
determines the sector number of the stator flux linkage. Likely, V0-7 determines the voltage 
vector numbers which are needed to bring the motor outputs around the reference point. V0 
and V7 are zero voltage vectors. dψ and dTe defines the digitized flux and the torque errors on 
controller side. ‘+1’ illustrates that torque or flux parameter need to be increased, ‘-1’ 
illustrates the parameters which are processed by the controller need to be decreased and ‘0’ is 
to define the control parameters are already around the reference point.  

 

NOVEL ST-DTC SCHEME 

The proposed method does not use hysteresis controller as depicted in Fig.3. Instead, stator 
flux linkage and torque output is traced and compared with the reference magnitudes 
continuously instead of using hysteresis controller.  
 
Motor stator flux linkage and torque outputs are defined as an operating point in torque-flux 
plane. Voltage vector selection is done in order to move the operating point of motor inside a 
hypothetical region in torque-flux plane. In this study, It is aimed to keep the motor operating 
point in rectangular shaped region, that size of the rectangular is defined as allowed torque 
and stator flux linkage error as in Fig.4.  In that manner, torque-flux plane is divided into nine 
zones. Selected voltage vector forces the motor operating point to a different direction as in 
Fig.4. For instance, if motor torque and flux linkage values are both below the defined error 
limit, this express that motor is operating in zone 7. Similarly, if both values are in limits, 
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motor is operating in zone 5. When the motor is in zone 7, and if the stator flux linkage sector 
number is `k`, then `k+1`th voltage vector needs to be applied so that motor operating point 
can be forced towards zone 5. 

 

Fig. 3 Proposed ST-DTC scheme. 

 
 

 
Fig. 4 Effect of voltage vectors to operating point in torque flux plane. 

 

THE PROPOSED VECTOR SELECTION TABLE   

The basis of this study is to reduce current harmonic distortion without any lack of control for 
an induction motor output parameters such as torque and flux linkage errors. For this purpose, 
an implementation of a new vector selection table based DTC algorithm is designed based on 
torque flux plane to define the selection of the voltage vectors which will be applied to.  
 
After the torque and flux hysteresis band are determined as shown in Fig.4, one has to decide 
the related action for the nine zones in the torque-flux plane. After trails among different 
choices, the vector selection table in Table II is determined so as to decrease the phase current 
harmonics. 

TABLE 2. VOLTAGE VECTOR SELECTION TABLE  

Zone 1 2 3 4 5 6 7 8 9 
Vector k+2 0/7 0/7 k+1 NC 0/7 k+1 k+1 k-1 
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Table II can be explained in detail as, if the motor is operating in zone 1 and the stator flux 
linkage is in sector ‘k’ apply ‘k+2th’ voltage vector till motor operating point moves to a 
different zone. When the motor comes to zone 5, do not change the voltage vector as NC 
states ‘No Change’. For zones 2/3 and 6 apply zero voltage, V0 or V7 in a manner to keep the 
switching frequency lower. 
 
In the simulation, while using the texture in Fig.4, one problem with the method is high 
frequency swinging of motor operating point between zone 4 and 2, and between zone 8 and 
6, Thus, the result is inevitable with high frequency switching while still keeping the torque 
and flux linkage in the limit. To overcome this issue, texture is adjusted to avoid swinging 
while keeping the motor in zone 5. The texture after adjustment is as shown in Fig.5. Zone 1 
is expanded as 0.8 times flux band by experience. Mathematical expressions for torque flux 
plane are a future work. 

 

Fig. 5 Modified motor operating zones in torque flux plane. 
 
 This adjustment is an example to show how the design can be visualized clearly.  
 

SIMULATION RESULTS 

To show the effectiveness of the proposed method, a test scheme is constructed using a 
predetermined induction motor model in the Simulink environment using the motor 
parameters below. 

4kW, 50 Hz, 1430 Rpm, Squirrel Cage IM 
Stator Resistance  : 1.405 Ohm 
Stator Inductance  : 0.005839 H 
Rotor Resistance  : 1.395 Ohm 
Rotor Inductance  : 0.005839 H 
Mutual Inductance             : 0.1722 H 
Pole Pair                                 : 2 
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To compare the both method, control parameters and input voltage are assigned same. 
Simulation parameters are: 

DC link Voltage   : 400 Volt 
Torque error limit   : ±0.5Nm 
Flux error limit   : ±0.01 Wb 
Torque reference   : 10 Nm 
Flux linkage reference  : 0.5 Wb. 
  

Then, a model is formed for induction motor drive system with the principle of conventional 
ST-DTC scheme by Matlab/Simulink. The conventional ST-DTC algorithm is compared with 
the proposed algorithm for new voltage vector selection table. The simulation results shows 
lower phase current harmonics, lower total harmonic distortion (THD), better flux trajectory 
follow as compared to the conventional ST-DTC scheme. 

 

 
Fig. 6 Conventional ST-DTC Stator flux linkage variation in time. 

 

 

Fig. 7 Proposed ST-DTC Stator flux linkage variation in time. 
 

When the two method is compared by means of flux linkage, both method achieves to keep 
the flux linkage in the set band at the steady state. However at the start up, the fluxlinkage of 
the conventional ST-DTC needed more duration to settle in the band than proposed method as 
shown in Fig. 6 and Fig 7. That is because conventinal DTC aims to keep the torque in the 
band as a priority, while the proposed method does not assign a priority between torque and 
flux linkage determined by the proposed switching table.   
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Fig. 8 Conventional ST-DTC phase current and phase current THD. 

 
Fig. 9 Proposed ST-DTC phase current and phase current THD. 

 
The flux linkage of the motor is controlled with lower distortion than conventional ST-DTC 
thus leading a better total harmonic distortion in phase current. THD value for the 
conventional method is %6.17 as in Fig. 8 while it is %5.31 for the proposed method as in Fig 
9. 
 

 
Fig. 10 Conventional ST-DTC torque variation in time 
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Fig. 11 Proposed ST-DTC torque variation in time. 

 
The torque response of the both method are similar. The proposed method achieved a better 
flux linkage results while preserving torque response characteristic of the motor as can be 
depicted in Fig 10 and Fig 11 respectively.   
 

CONCLUSION 

In this study, the switching table based DTC application of Induction motor in torque-flux 
plane is explained. The proposed torque-flux plane achieved a visual platform to construct a 
switching table which is defined by the operation point of induction motor. Motor flux-
linkage and torque output is traced continuously, instead of using flux and torque controller in 
a hysteresis band manner. An improvement in the phase current total harmonic distortion is 
achieved without any degradation in the torque and flux band. The proposed method can be 
applied to the current motor drives by software upgrade. The study is carried on rectangular 
shaped torque and flux band, thus different band approaches can be investigated for improved 
THD values and reduced switching frequency as a future work.  
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