

3
rd

 International Symposium on Sustainable Development, May 31 - June 01 2012, Sarajevo

22

system. Online Journal of Distance Learning Administration, volume 7, number 3. URL,

http://www.westga.edu/~distance/ojdla/fall73/kosak73.html

Maguire, L.L., (2002). Literature review-Faculty participation in online distance education:

Barriers and motivators. Online Journal of Distance Learning Administration, volume 8,

number 1, 2002. URL,

http://www.westga.edu/~distance/ojdla/spring81/maguire81.html

Yang, Y., (2010). Roles of administrators in ensuring the quality of online programs.

Knowledge Management & E–Learning, volume 2, number 4, 2010. URL, http://kmel-

journal.org/ojs/index.php/online-publication/article/viewArticle/80

Zhen, Garthwait,Y. A. & Pratt, P., (2008). Factors affecting faculty members’ decision to

teach or not to teach online in higher education. Online Journal of Distance Learning

Administration, Volume 11, number 3. URL,

http://www.westga.edu/~distance/ojdla/fall113/zhen113.html

Republic of Turkey Ministry of National Education (MEB). URL,

http://www.meb.gov.tr/english/indexeng.htm

The council of Higher Education (YOK). URL,

http://www.yok.gov.tr/en/content/view/527/222/

Garrison, D. R., & Vaughan, N. D., (2008). Blended learning in higher education:

framework, principles, and guidelines. San Francisco, CA: Wiley & Sons, Inc.

[Holden, J. T. & Westfall, P., (2010). An Instructional Media Selection for Distance

Learning-Implications for Blended Learning. United States Distance Learning Association.

Wang, W., & Wang, C., (2009). An empirical study of instructor adoption of web-based

learning systems. Computers & Education, Vol. 53, No.3, pp. 761-774.

H2O persistence framework for column oriented distributed (NoSQL) databases

Dino Kečo, Dženana Đonko

University of Sarajevo, Faculty of Electrical Engineering

Zmaja od Bosne bb, 71000 Sarajevo, Bosnia and Herzegovina

E - mails: dino.keco@gmail.com, ddonko@etf.unsa.ba

Abstract

Cloud architectures are most commonly used in cases when large scale data processing is

required. Building applications for cloud architectures requires a lot of engineering

experience, especially in cases of data persistence. Persistence in cloud architectures is solved

using NoSQL database models. In this paper we are working with column oriented NoSQL

database model. Main research goal of this paper is building of new persistence framework

http://www.westga.edu/~distance/ojdla/fall73/kosak73.html
http://www.westga.edu/~distance/ojdla/spring81/maguire81.html
http://kmel-journal.org/ojs/index.php/online-publication/article/viewArticle/80
http://kmel-journal.org/ojs/index.php/online-publication/article/viewArticle/80
http://www.westga.edu/~distance/ojdla/fall113/zhen113.html
http://www.meb.gov.tr/english/indexeng.htm
http://www.yok.gov.tr/en/content/view/527/222/

3
rd

 International Symposium on Sustainable Development, May 31 - June 01 2012, Sarajevo

23

for column oriented NoSQL databases. H2O (HBase to Object) framework is created to

resolve problem of mapping objects into rows in column oriented database and to provide

effective mechanisms for data retrieval. Main focus of this framework is to support

persistence of domain models presented by standard UML language. Current implementation

supports storing content into HBase NoSQL database. Core engine of H2O framework is

built on top of XPath standard. All mappings between domain model attributes and columns

in row are represented using XPaths. These paths are used to transform object into row and

vice versa. H2O framework contains component for integration with Hadoop map reduce

processing library to simplify writing of Hadoop map reduce parallel programs. We took two

hardware platforms of same price. First platform have HBase 0.90.1 and H2O installed and

other have installed Oracle 11g and Hibernate framework. We are comparing performance of

these two platforms from aspects of retrieval and persistence of objects. Result of our

comparison is that NoSQL model is better from aspects of retrieval by primary key but shows

lower performances in save operations.

Keywords: NoSQL, persistence, distributed, HBase, Hadoop, mapping, framework, UML,

map-reduce

1.INTRODUCTION

Problem of mapping and persistence of objects in relational database model was open

question for about 15 years [1]. This problem is resolved by ORM frameworks like

Hibernate. Mapping and persistence of objects into NoSQL database model is even harder to

solve because difference between models is much larger. Our work is focused on developing

framework which will resolve these two problems.

H2O framework is object/row mapping tool that provides user friendly interface to

persistence application layer. This interface is developed using DAO (data access object)

design pattern.

Because NoSQL database model is easy to integrate with map reduce programs, in this paper

we present H2O modules which are used for integration with Hadoop map reduce library [5].

Mainly these modules are used to simplify process of creating map reduce jobs.

This paper makes the following research contributions:

We present model of new persistence framework.

We present implementation of H2O framework with support for HBase database.

We present modules for integration with Hadoop map reduce library.

Section 2 provide more detailed explanation of mapping and persistence problem. In section

3 we present model of H2O framework. Section 4 provides implementation details with focus

on main components. We present model and implementation of components used for

integration with map reduce library in section 5 and we conclude in section 6.

3
rd

 International Symposium on Sustainable Development, May 31 - June 01 2012, Sarajevo

24

2. PROBLEM FORMULATION

All business applications have domain model which is presented by graph of classes. In most

cases these classes are presented using UML modeling language. Main persistence problem is

mapping of graph of objects into format suitable for storing. In this case we are mapping

graph of objects into key value database storage.

ORM problems like granularity, subtypes, identity, data navigation, relation to association,

etc. [1] are even harder to solve because data models are much more different. Concepts like

inheritance, encapsulation and polymorphism doesn't exist in key value storages and because

of that it is necessary to find appropriate replacement for those concepts. What H2O is trying

to resolve is illustrated on Fig 1. and model of one solution, based on xpath standard [6], is

presented in next section of this paper.

Fig 1. Conceptual illustration of mapping problem for key value distributed storages

On the left side of Fig 1. we have graph of domain objects, while on the right side we have

key value database storage. H2O needs to find best possible way to map data presented like

graph of objects into row of key values storage and to keep data consistent in any possible

case.

3. FRAMEWORK MODEL

In this section we present model of H2O framework and it basic components which are

presented on Fig 2.

3
rd

 International Symposium on Sustainable Development, May 31 - June 01 2012, Sarajevo

25

Fig 2. H2O basic components

Entry point component for user of H2O is Session, which provides basic methods (get, create,

update and delete) to work with database. Main component of H2O framework is

MappingEngine which performs conversion of graph of objects into key value row and vice

versa. IndexingEngine is component which provides support for indexing. PersistenceEngine

is component which is used for interaction with specific database implementation. In this case

we are using HBase persistence engine. IndexingEngine and PersistenceEngine should be

implemented by user for specific database and index implementations. MappingEngine, most

important and most complicated, component is based on customized xpath standard which is

capable to describe additional information about each path in graph of objects. This

customization is needed to describe data types (class) of nodes in graph of objects.

Problem of subtypes, which is main problem in ORM, is resolved in H2O by creating

different mappings for each of subtypes available. Although ORM persistence frameworks

have multiple strategies for persistence of subtypes [1] all of them are compatible with each

other. Because of that fact in H2O we are supporting just one mapping strategy for subtypes.

If there is a need for cycles in domain model that can't be resolved using xpath because xpath

is structure driven, which causes infinite loops in mappings. Because of this new component

is introduced, SerializationEngine, which uses one of standard serialization frameworks for

data serialization. Introduction of serialization enables H2O to handle cycles because

serialization frameworks are data driven [7]. Any user of H2O framework can easily

implement his own strategy of data serialization by extending interface of

SerializationEngine.

4. IMPLEMENTATION

In this section, we are presenting API which provide H2O framework for data persistence and

data retrieval. As part of this section we present basic comparison of persistence

3
rd

 International Symposium on Sustainable Development, May 31 - June 01 2012, Sarajevo

26

performances between H2O/HBase and Hibernate/Oracle databases. For each comparison set

we have used same hardware platforms. We have used PowerEdge M805 Dell Blade servers

with two Quad Core Xeon processors and 128 GB of RAM memory. For Hibernate/Oracle

test we have used two M805 servers connected to Oracle cluster, and for H2O/HBase we

have used VM Ware virtualization and created 8 hosts for setting up HBase cluster. Each

node had 2 cores and 32 GB of RAM memory. Oracle RAC version 11g is used for setting up

Oracle database while HBase 0.90.1 version is used for HBase cluster.

Even if there is a big difference between relational and key/value database models, API on

DAO layer is same for any database if DAO design pattern is used in application architecture.

H2O framework is built for applications which will use DAO design pattern in their

architecture. Main advantage of this is that all business application can be modeled using

standard modeling languages like UML and persist that model into any type of database.

On Fig 3. we present DAO API which is provided by H2O framework for any kind of

database implementation.

Fig 3. API provided by H2O framework

As shown in Fig 3. H2O provides basic CRUD (Create, Read, Update, Delete) operations.

We have performed three tests to compare Oracle database and Hibernate as persistence

framework and HBase and H2O on the other side. We have performed following tests:

Data retrieval by primary key: In this experiment we monitor speed to read one record

(record size 2KB) from database by primary key. We performed these tests with different

number of records persisted in databases. Results of this tests are presented on Fig 4. As

shown on Fig 4. Relational database doesn't scale well when # of records is greater than 64

M.

Data persistence with increasing number of objects in graph: In this experiment we monitor

speed to persist one record but with variable record size (nodes in graph). Results on Fig 5.

shows that HBase/H2O is much slower than relational database, which is caused by

MappingEngine. MappingEngine component doesn't have multi-threaded processing and that

3
rd

 International Symposium on Sustainable Development, May 31 - June 01 2012, Sarajevo

27

is main reason for slowness. Definitely there is open space for optimization of this

component.

Data persistence with static number of objects in graph: In this test we are inserting records in

database with variable number of records inside database. Results on Fig 6. shows that insert

in database is static regarding number of records persisted in database.

Fig 4. Data retrieval by primary key

Fig 5. Data persistence with increasing number of nodes in domain graph

Fig 6. Data persistence with static number of nodes in domain graph

3
rd

 International Symposium on Sustainable Development, May 31 - June 01 2012, Sarajevo

28

5. MAP REDUCE INTEGRATION

Inspired by the map and reduce primitives present in functional languages, Google proposed

the Map Reduce [3] abstraction that enables users to easily develop large-scale distributed

applications. Mechanisms of fault tolerance is handled inside of map reduce library by re-

executing failed tasks.

In this model, the computation inputs a set of key/value pairs and produces a set of output

key/value pairs. The user of the map reduce library expresses computation as two functions:

Map and Reduce. Map written by user, takes an input pair and produces a set of intermediate

key/value pairs. The map reduce framework then groups together all intermediate values

associated with same intermediate values key and passes them to reduce function. The

Reduce function, also written by user, accepts intermediate key I and set of values for that

key. It merges together these values to form a possibly smaller set of values.

H2O framework goes one step more in abstraction over map reduce framework. Custom

adapters inside H2O framework enables that value inside key/value pair be a graph of

objects. This provides user more flexible and more user friendly interface to work with. This

enables faster development of map reduce applications where complexity of persistence and

mappings is hidden inside of H2O framework.

Because, H2O framework is build to work with Hadoop implementation of map reduce

library, adapters for integration, known as H2OInputFormat and H2OOutputFormat are

named by Hadoop naming standard.

6. CONCLUSION AND FUTURE WORK

H2O is created to solve problem of mapping between graph of domain objects and row in

key/value storage. As presented in this paper there is a lot of open space for improvements in

MappingEngine component. Also support for other implementations of key/value storages

like Cassandra should be implemented.

Main reason why H2O is created is to speed up development process by using standard UML

modeling techniques and to solve all problems related to persistence. This will enable users to

focus on business logic instead of technical details. Integration with Hadoop map reduce

library provides easy way to write parallel applications and not even to worry about data

persistence.

For future we plan to create an open source project from H2O to involve more people into

this and to gather new ideas.

REFERENCES

Christian Bauer and Gavin King (2006.) - Java Persistence with Hibernate Second Edition of

Hibernate in Action, Manning,

Ming-Yee Iu and Willy Zwaenepeol - HadoopToSQL a MapReduce Query Optimizer,

EuroSys (2010),

Jeffrey Dean and Sanjay Ghemawat - MapReduce: Simplifed Data Processing on Large

Clusters, OSDI (2004),

3
rd

 International Symposium on Sustainable Development, May 31 - June 01 2012, Sarajevo

29

HBase web page - hbase.apache.org,

Hadoop web page - hadoop.apache.org,

Jxpath web page - commons.apache.org/jxpath,

JacksonJSON web page - jackson.codehaus.org

The investigation of optimum welding parameters in connecting high alloyed

X53CrMnNiN219 and X45CrSi93 steels by friction welding

Mehmet Uzkut1, Bekirsadik Ünlü, Selimsarper Yilmaz2, Mustafa Akdağ3

1Celal Bayar University, Vocational High School, Department of Machinery,

45400, Turgutlu,Manisa, Turkey

2Celal Bayar University, Vocational High School, Department of Machinery,

 45020, Manisa, Turkey

3Gediz University,Faculty of Engineering, Department of Mechanical Engineering,

Menemen, Izmir, Turkey

E-mails: mehmet.uzkut@bayar.edu.tr, bekir.unlu@bayar.edu.tr, selim.yilmaz@bayar.edu.tr,

mustafa.akdag@gediz.edu.tr

Abstract

In this study, different welding parameters are applied to two different steels with high alloys

and mechanical and metallographical investigations were performed. Thus, the optimum

welding parameters were investigated for these materials and working conditions. 12.30

diameter steel bars made up of 1.4871 (X53CrMnNiN219) & 1.4718 (X45CrSi93) steel were

used as experimental material. The material loss increased with increase in friction and

rotating pressure. The highest hardness and fracture energy were obtained in B5 group.

Keywords: Friction Welding, Welding Parameters, Microstructure.

1. INTRODUCTION

Joining has increasingly been used in the material technology because materials having

different mechanical properties need to be efficiently joined to increase material’s

performance. The most suitable method of joiningtwo different alloyed steel is welding(Anık,

1983). After welding process, the properties of welding zone naturally becomedifferent from

the properties of alloyed steels andthis difference maycause someproblems.The use melting

welding methods, among many kinds of welding methods, has also increased these

mailto:mehmet.uzkut@bayar.edu.tr
mailto:bekir.unlu@bayar.edu.tr
mailto:selim.yilmaz@bayar.edu.tr

