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Abstract: In this study, nonlinear vibrations of curved Euler-Bernoulli beams carrying 
arbitrarily placed concentrated masses have been investigated. Sag-to-span ratio of the beam, 
which was assumed to have sinusoidal curvature function at the beginning, was taken as 1/10. 
Equations of motion were obtained by using Hamilton Principle. Cubic nonlinear terms 
aroused at the mathematical model because of the elongations occurred during the vibrations 
of the simple-simple supported beam. Method of multiple scales, a perturbation technique, 
was used for solving the equations of motion about analytically. Natural frequencies were 
obtained for different numbers, sizes and locations of the masses as control parameters. 
Analytical solutions were found for primary resonance case. Frequency-amplitude and 
frequency-response graphs were drawn using different control parameters for these resonance 
cases. Stability of the solutions was investigated in detail. 
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Introduction  

 
Many engineering problems such as bridges, rails, automotive industries, work pieces and machine elements 

can be modeled as curved beams. Before proceeding to our investigation on these beams, some researches made 
on the beam vibrations, both linear and nonlinear, must be mentioned. Some of these studies are such that, 
Rehfield (1974) derived the equations of motion of a shallow arch with an arbitrary rise function and studied the 
free vibrations approximately. Singh and Ali (1975) studied a moderately thick clamped beam with a sinusoidal 
rise function by adding the effects of transverse shear and rotary inertia. Nayfeh et al. (1979) developed a new 
method, which is a combination of perturbation method and numerical method, to be used in the analysis of 
forced vibrations. Using two beam elements one has three degree-of-freedom and other four, Krishnan and 
Suresh (1998) studied static and free vibration of curved beams. Taking account into the effect of shear 
deformation and rotary inertia, they determined frequencies of these beams. For a general state of non-uniform 
initial stress, Chen and Shen (1998) derived the virtual work expressions of initially stressed curved beams. They 
investigated the influence of arc segment angles, elastic foundation, and initial stresses on natural frequencies. 
Oz et al.(1998) examined a simply supported slightly curved beam resting on an elastic foundation with cubic 
non-linearities. Considering free-undamped and forced-damped vibrations, he analyzed the effects of the elastic 
foundation, axial stretching and curvature on the vibrations of the beams. Tarnopolskaya, De Hoog and Fletcher 
(1999) examined the vibrational behavior of beams with arbitrarily varying curvature and cross-section in the 
lower region of the spectrum. For a particular type of beam curvature and cross-section, they examined whether 
or not the mode transition takes place. Lacarbonara et al. (2002) developed open-loop nonlinear control strategy, 
and applied it to a hinged-hinged shallow arch. They assumed the beam subjected to a longitudinal end-
displacement with frequency twice the frequency of the second mode (principal parametric resonance). Tien et 
al. (1994) studied the dynamics of a shallow arch subjected to harmonic excitation. In the presence of both 
external and 1:1 internal resonance, he examined the bifurcation behavior of the shallow arch system. 
Lacarbonara, Yabuno and Okhuma (2003) investigated experimentally the principal parametric resonance of the 
second mode of a simply supported first-mode buckled beam. By considering axial loads slightly above the first 
buckling load, they examined the frequency-response curves for different excitation amplitudes and the space-
time characteristics of the nonlinear resonant motions. Nayfeh et al. (1999) studied to construct the nonlinear 
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normal modes of a fixed-fixed buckled beam about its first post-buckling mode. Abe (2006) studied the validity 
of nonlinear vibration analysis of continuous systems with quadratic and cubic nonlinearities. Lee, Poon and Ng 
(2006) studied to derive the equations of motion for a clamped–clamped curved beam subjected to transverse 
sinusoidal loads. Taking into account the effects of beam mid-plane stretching and damping Nayfeh and 
Pakdemirli (1994) investigated the nonlinear vibrations of a beam-mass-spring system. In their analysis 
frequency-response and force-response curves shows that the nonlinearity arouses due to stretching and location 
of nonlinear spring supporting the mass. Posiadala (1997) presented the solution of the free vibration problem of 
a Timoshenko beam with additional attached elements. By using the Lagrange multiplier formalism, he showed 
the influence of the various parameters on the frequencies of the combined system. Ozkaya et al. (1997) studied 
nonlinear vibrations of a beam-mass system under different boundary conditions. For different boundary 
conditions, locations and magnitude of the masses, he examined the effects of mid-plane stretching on the beam 
vibrations. Assuming simply supported end conditions, Ozkaya (2001) studied an Euler–Bernoulli beam carrying 
concentrated masses. He investigated the effects of mid-plane stretching on free-undamped and forced-damped 
vibrations of the beam in detail. Under assumption of simply supported end conditions Ozkaya (2002) studied 
nonlinear vibrations of an Euler–Bernoulli beam carrying concentrated masses. He investigated free-undamped 
and forced-damped vibrations of this beam–mass system for different locations, magnitudes and number of the 
masses. Adessi et al. (2005) studied the regime of high pre-stressed beams. Considering a lumped mass that is 
rigidly clamped to the beam at an arbitrary point along its span and assuming different boundary 
conditions(simply supported and hinged-hinged), they examined post-buckling configurations of the beam. The 
effect of the point concentrated mass on the large amplitude free vibrations of beam under symmetric 
configuration was investigated. Zhou and Ji (2006) studied free vibration characteristics of a non-uniform beam 
with arbitrarily distributed spring-mass. For the special cases of the proposed solution, they investigated the 
coupled vibrations of a beam and distributed spring-mass in detail. Hassanpour et al. (2007) investigated the 
vibrations of a beam with a concentrated mass within its interval length subjected to a quasi-static axial force. By 
choosing the location of the concentrated mass arbitrarily, they studied the transient and steady state behavior of 
the resonator in the time domain. Maiza et al. (2007) studied to describe the determination of the natural 
frequencies of a Bernoulli–Euler beam with general boundary conditions at the ends and carrying a finite number 
of masses at arbitrary positions, by considering their rotatory inertia. To present a general solution of the 
problem, they used translational and rotational springs at both ends as well as elastic restraints. Sochacki (2008) 
considered a simply supported beam loaded by both a longitudinal force and a concentrated mass in a chosen 
position along the beam length. He investigated the influence of additional mass and elasticity as well as an 
undamped harmonic oscillator on the position of the solutions on the stability chart. By considering, a 
continuous beam attached spring–mass systems and using directly differential equation of motion, Lin and Tsai 
(2007) obtained the natural frequencies and associated mode shapes of the vibrating system. They used FEA and 
thus made no other assumptions. Yesilce and Demirdag (2008) studied the multi-span uniform Timoshenko 
beam carrying multiple spring-mass systems with/without axial force effect. They described the determination of 
the natural frequencies and mode shapes of vibration as well as the effect of axial force. Finally, nonlinear 
transverse vibrations of a slightly curved Euler Bernoulli beam carrying a concentrated mass has been studied by 
E. Ozkaya et al. (2009) 

In this study, nonlinear vibrations of curved beams carrying multiple concentrated masses were investigated. 
For the beam which is of Euler-Bernoulli type, it was assumed firstly that the beam had the form of sinusoidal 
rising function and was constricted from both ends by the immovable simply supports. The method of multiple 
scales (MMS), a perturbation method, was used in order to seek analytical solutions for the derived mathematical 
model. The primary resonance was investigated. Natural frequencies were calculated according to different 
control parameters such as number, magnitude and position of the masses. Amplitude and phase modulation 
equations were derived. Effects of the addition of nonlinear terms to the natural frequency were searched via 
frequency-amplitude and frequency-response graphs. Experiencing different control parameters, responses to the 
excitations were investigated. Having obtained solutions, the stable and unstable regions of the system were 
determined by using the stability analysis.  
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Figure 1. The curved beam carrying multiple concentrated masses. 

 
 
Equations of motion  
 

In Fig. 1, for the beam constricted at both ends with immovable supports, ŵm and ûm denote transversal and 
longitudinal displacements, respectively. Assuming that ratio of the maximum amplitude of the beam to its 
projected length L is equal 1/10, let us keep in mind the curvature function of the beam to be in the form of 
sinusoidal variation as given below:  
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         Let us assume that n number of concentrated masses is attached on the beam. The following equation and 
boundary conditions providing this equation can be written: 
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where M is the concentrated mass attached on the beam, x̂  is the distance from the immovable end at left-hand 
side, E is the Young’s modulus, ρ is the density, A is the cross sectional area of the beam, I is the moment of 
inertia of the beam cross-section with respect to the neutral axis. (˙ ) and (' ) denote differentiations with respect 
to the time t and spatial variable x, respectively. 

Eq. (4.a) is the equation of motion for the system and consists of n+1 equations. Equations of the motion 
and the boundary conditions are dependent on the size of the system and the material used. These equations can 
be made independent from the dimensional parameters by making the following definitions:    
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where r is the radius of gyration of the beam cross section, α is the ratio between the concentrated mass and the 
mass of the beam, η is the dimensionless displacement variable.  
           Adding dimensionless damping and forcing terms after non-dimensionalization, Eq. (4) can be rewritten 
as follows:    
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where µ is the dimensionless damping coefficient, F and Ω are the amplitude and frequency of the dimensionless 
external forcing term, respectively. In a similar way, the curvature function of the beam can be written in the 
following non-dimensional form:  

x)sin(π(x)Y
0

.=       (7) 

 
Perturbation Analysis  

 
In this section, approximate solutions to the system will be searched. Method of multiple scales (MMS), a 

perturbation technique, will be applied to the partial differential equations and corresponding boundary 
conditions directly. Eq. (6) is assumed to have a solution as a series expansion of the form below: 
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where ε is a small bookkeeping parameter artificially inserted into the equations. Taking this parameter as 1 at 
the end, we obtain a weakly nonlinear system. In this expansion, T0=

.t is the fast time scale, and T1=ε.t and 
T2=ε2.t are the slow time scales in MMS. Derivatives with respect to time are written as:  
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First order (ε1) of the expansion in Eq. (9) corresponds to the linear problem of the system. Other orders 
constitutes nonlinear problem of the system. In order to counter the effects of the nonlinear terms, the forcing 
and damping terms are ordered as follows: 
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Let us assume that the curvature function is of order 1 (ε0). In this case, substituting Eqs. (8-11) into Eq. (6) and 
separating each order of ε, one obtains the following equations: 
order ε (j=1):  
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order ε2 (j=2): 
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order ε3 (j=3):  
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Primary Resonance Case 

Primary resonance occurs in case that the forcing frequency is close to one of the natural frequencies of the 
system. Thus, a sudden arise in the vibration amplitude happens. In order to solve linear problem in Eq. (12), we 
assume the solutions at order ε as of the following form:  

                                                  ( ) ( )[ ] ( )x.Ycc.eT,TAT,T,x,Tw 1m
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where cc is the complex conjugate of the preceding terms, and ω is the natural frequency, Ym+1 are the functions 
describing the mode shapes. Inserting Eq. (15) into Eq. (12), following differential equations and boundary 
conditions can be obtained:   
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In order to obtain the solutions at order ε2 of the perturbation series, it is required that a solvability 

condition such as D1A (T1, T2) = 0 must be satisfied. Thus, the amplitude A=A (T2) does not depend on T1. For 
obtaining the solution resulting from non-secular terms, Eq. (15) must be inserted into Eq. (13).  In this case, 
equations at order ε2 accept solutions of the form as below: 
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Inserting Eq. (17) into Eq. (13), differential equations and boundary conditions can be written as follows: 

″
















′′+″
















′+″
















′′=− +

=

+

+
=

+

+
=

+

+++ ∑ ∫∑ ∫∑ ∫ 1m

n

r

r

r

1r00

n

r

r

r

1r0

n

r

r

r

1r01m
2ıv

1m Ydx.YY.YdxYYdx.Y. ..
2

1
..4

0

1

0

1 2

0

1

1)(1)(1)(

η

η

η

η

η

η

φφφ ω     (18.a) 

,,, 1)(11)(11)(1
pppppp xxxxxx 1pp1pp1pp

ηηηηηη
φφφφφφ

======
″=″′=′= +++  

( ) 0,0...4
110

0
1)(1)(11111

2
1)(1 =″==″==+−

++ ==== ++
=

″′
+

″′

nn xxx
x 1n1n

x
pp1pp

p ηηηη φφφφφωαφφ
η

,

 (18.b) 

″
















′′+″
















′+″
















′′

+
=

+

+
=

+

+
=

+

+=+ ∑ ∫∑ ∫∑ ∫ 1m

n

r

r

r

1r00

n

r

r

r

1r0

n

r

r

r

1r0
ıv

1m Ydx.YY.YdxYYdx.Y ..
2

1
.

0

1

0

1 2

0

1

2)(2)(

η

η

η

η

η

η

φφ           (19.a) 



 

743 
 

pppppp xxxxxx 1pp1pp1pp
ηηηηηη

φφφφφφ
======

″=″′=′= +++ 2)(22)(22)(2 ,, , 

02)(2 =






 ″′
−″′

=
+

px
1pp

η

φφ ,    0
1

1
0

0
2)(2)(1212 =″==″=

+
+ ===

= ++
n

n x
x

x
x 1n1n

ηηη
η φφφφ   (19.b) 

 
At order ε3 of the perturbation series, having substituted Eqs. (15-17) into Eq. (14), the resulting 

equation will accept the solution of the following form:  
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where Wm+1(x,T2) corresponds to the solution for the non-secular terms, and cc to the complex conjugate of the 
preceding terms.  
Excitation frequency is taken close to any natural frequency of the system as below: 
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where σ is the detuning parameter denoting closeness of the forcing frequency to the natural frequency. Under 
this assumption, inserting Eq. (20) into Eq. (14) and eliminating the secular terms, the following differential 
equations and boundary conditions can be obtained:  
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The solvability condition for Eq. (22) can be written as follows: 

[ ] 2....
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where normalization process and coefficients f, k, Γ are as below:  
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Let the complex amplitudes A be written as follows: 
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  (28-29) 

where a is the real amplitude and θ is the phase. Inserting these definitions into Eq. (23), and separating real and 
imaginary parts, one obtains the following phase-modulation equations:   
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31) 
where phase γ and λ, indicating the effects of the nonlinear terms to the natural frequency, can be obtained as 
below: 
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Using Eq. (16), natural frequencies of the curved beam-mass system can be calculated. The first five 
natural frequencies were given in Tabs. 1 and 2 for different magnitudes and locations of the masses. From these 
tables, one can see that increasing the magnitudes of the concentrated masses result increase in the natural 
frequencies. If the number and magnitudes of the masses attached near to the middle of the beam increase, the 
natural frequencies will increase more.   

Free undamped vibration behavior of the system can be examined from the nonlinear frequency-amplitude 
curves. In order to investigate the steady-state solutions, a& is assumed to be zero and f=µ=σ=0 is taken. Thus, 
the nonlinear frequency equation defined as below in Eq. (34) can be written as in Eq. (35) under constant 
amplitude assumption as a=a0; 

θωωnl
&+= ,  

2

0nl λ.aωω +=     (34-35)  

From above equations, relation between the nonlinear frequency and the vibration amplitude is noticed to be of 
parabolic type. 

η1 η2 α1 α2 ω1 ω2 ω3 ω4 ω5 λ(ω1) 

0.1 0.3 
1 
1 
10 

1 
10 
1 

7.415 
3.016 
5.360 

27.830 
26.559 
19.114 

55.415 
51.089 
38.637 

99.112 
94.530 
96.707 

196.791 
194.769 
195.720 

-0.6176 
-0.2423 
-0.4506 

0.1 0.5 
1 
1 
10 

1 
10 
1 

6.741 
2.601 
5.230 

28.184 
27.381 
14.057 

54.793 
51.553 
51.300 

116.644 
114.269 
108.899 

186.171 
182.097 
184.774 

-0.5635 
-0.2185 
-0.4731 

0.1 0.7 
1 
1 
10 

1 
10 
1 

7.535 
3.027 
5.630 

22.674 
20.376 
12.584 

60.319 
58.944 
51.182 

125.032 
124.297 
121.441 

174.866 
168.195 
171.654 

-0.6333 
-0.2449 
-0.6025 

0.3 0.5 
1 
1 
10 

1 
10 
1 

5.779 
2.538 
2.881 

25.166 
22.040 
18.174 

60.945 
54.787 
59.622 

141.294 
140.869 
137.002 

183.112 
179.432 
180.906 

-0.4812 
-0.2129 
-0.2347 

0.3 0.7 
1 
1 
10 

1 
10 
10 

6.343 
2.952 
2.311 

18.180 
13.950 
6.373 

83.793 
82.956 
82.038 

137.955 
135.816 
134.247 

172.914 
167.630 
161.940 

-0.5298 
-0.2431 
-0.1933 

Table 1: The first five natural frequencies and the effects of the nonlinearity (λ) for the first mode of the curved 
beam with two concentrated masses. 

η1 η2 η3 α1 α2 α3 ω1 ω2 ω3 ω4 ω5 λ(ω1) 

0.1 0.3 0.5 

1 
1 
1 
10 
1 
10 

1 
1 
10 
10 
10 
1 

1 
10 
1 
1 

10 
1 

5.645 
2.528 
2.862 
2.700 
2.039 
4.647 

22.643 
19.436 
17.845 
14.023 
9.683 

14.049 

52.994 
51.143 
50.760 
24.003 
50.284 
38.150 

71.324 
66.114 
63.359 
60.998 
56.843 
65.455 

178.259 
175.608 
177.419 
177.176 
174.928 
177.937 

-0.4696 
-0.2120 
-0.2330 
-0.2186 
-0.1694 
-0.4008 

0.3 0.5 0.7 

1 
1 
1 
10 
10 
10 

1 
10 
1 
10 
1 
10 

1 
1 

10 
1 

10 
10 

5.097 
2.470 
2.804 
2.013 
2.233 
1.759 

18.180 
18.180 
12.675 
9.243 
6.373 
6.373 

45.474 
32.340 
41.748 
27.458 
36.714 
16.030 

137.955 
137.955 
135.549 
135.455 
134.247 
134.247 

151.362 
148.660 
147.998 
145.672 
143.636 
141.485 

-0.4250 
-0.2071 
-0.2320 
-0.1675 
-0.1866 
-0.1467 
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Table 2: The first five natural frequencies and the effects of the nonlinearity (λ) for the first mode of the curved 

beam with three concentrated masses. 
 

For the first mode of the vibration, λ values indicating the effects of the nonlinear terms to the natural 
frequency were given in Table 1 and 2. As seen from Eq. (35), for λ values with negative sign nonlinear terms 
have decreasing effect on the natural frequencies for the first mode. This decreasing effect reduces with 
increasing both magnitudes and number of the masses. 

In Figs. (2-3), nonlinear frequency-amplitude curves have been plotted for different number of the masses, 
mass ratios, and mass locations from the left support. These curves were drawn for the case of two concentrated 
masses in Fig. 2. In Fig. 2.a, these masses have the same magnitude. Holding the place of one of these masses 
constant (η1=0.1), characteristics of the frequency-response curve were investigated by changing the location of 
the other mass. These masses have different magnitudes in Fig. 2.b. Changing the location of the big mass 
(α=10), its effect on the nonlinear frequency was searched. Nonlinear frequency-amplitude curves in Fig. 3 were 
drawn for the case of three concentrated masses. Having equal masses in magnitude, different mass locations 
were used for each curve in Fig. 3.a. Thus, the effects of both symmetric and asymmetric cases on the nonlinear 
frequency-amplitude curves were investigated. In Fig. 3.b, masses in different magnitudes were used and placed 
on the beam constituting the symmetric and asymmetric cases. As seen from these curves, increasing the number 
and magnitudes of the concentrated masses decrease both linear and nonlinear frequencies of the system. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
           a)   α1=1, α2=1, η1=0.1, η2=0.3,                                    b)   α1=10, α2=1, η1=0.1, η2=0.3 
                 α1=1, α2=1, η1=0.3, η2=0.5,                                          α1=1, α2=10, η1=0.3, η2=0.5 
                 α1=1, α2=1, η1=0.3, η2=0.7                                           α1=1, α2=10, η1=0.3, η2=0.7 

Figure 2: Nonlinear frequency-amplitude curves for the first mode of the curved beam with two 
concentrated masses. 
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5.004 
2.540 
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       a)   α1=1, α2=1, α3=1, η1=0.1, η2=0.3, η3=0.5              b)   α1=1, α2=10, α3=1, η1=0.1, η2=0.3, η3=0.5 
             α1=1, α2=1, α3=1, η1=0.3, η2=0.5, η3=0.7                     α1=1, α2=10, α3=1, η1=0.3, η2=0.5, η3=0.7 

Figure 3: Nonlinear frequency-amplitude curves for the first mode of the curved beam with three 
concentrated masses. 

 
For the case of system being damped and externally forced, let us investigate the nonlinear vibration 

behavior of the system. At steady-state region, a&  and γ&  were taken as zero denoting no change in amplitude and 

phase with time. Eliminating γ in Eqs. (30-31), one can obtain the relation between the detuning parameter (σ) 
and the amplitude as below: 

22
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f
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ω
     (36) 

Forced and damped vibrations of the system can be investigated by plotting the frequency-amplitude curves 
from Eq. (36). These curves were drawn for f=1(forcing) and µ=0.2(damping) in Figs. (4-5). Case of two 
concentrated masses was considered in Fig. 4. In Fig. 4.a, taking the masses equal in magnitude, effects of the 
mass locations on the frequency-response curves were investigated. In Fig. 4.b, considering different magnitudes 
of the masses, effects of the big one and its location on the curves were treated. Case of three concentrated 
masses was considered in Figs. 5. Making up symmetric and asymmetric cases according to different mass 
locations, their effects on the frequency-response curves were investigated. From these figures, increasing the 
magnitudes and number of masses the maximum amplitudes of the vibration increase and the system exhibits 
more softening behavior. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
         a)   α1=1, α2=1, η1=0.1, η2=0.3                                   b)  α1=10, α2=1, η1=0.1, η2=0.3 
                α1=1, α2=1, η1=0.3, η2=0.5                                         α1=1, α2=10, η1=0.3, η2=0.5 
                α1=1, α2=1, η1=0.3, η2=0.7                                         α1=1, α2=10, η1=0.3, η2=0.7 

Figure 4: Forcing frequency-response curves for the first mode of the curved beam with two concentrated 
masses. 
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a)   α1=1, α2=1, α3=1, η1=0.1, η2=0.3, η3=0.5                    b)    α1=1, α2=10, α3=1, η1=0.1, η2=0.3, η3=0.5 
      α1=1, α2=1, α3=1, η1=0.3, η2=0.5, η3=0.7                            α1=1, α2=10, α3=1, η1=0.3, η2=0.5, η3=0.7 
Figure 5: Forcing frequency-response curves for the first mode of the curved beam with three concentrated 

masses. 
 
 
Results 

 
In this study, nonlinear vibrations of a curved beam carrying multiple concentrated masses were investigated. 

Beam was assumed Euler-Bernoulli type and sinusoidal function was used for the curvature of the beam. 
Primary resonance case was investigated. Approximate solutions were obtained by means of the method of 
multiple scales, a perturbation technique. In perturbation series, the first order corresponds to the linear problem 
of the system. Including effects of the nonlinear terms to the linear solution at other orders, the nonlinear system 
was solved. For the steady-state case, free-undamped and forced-damped vibrations were investigated. Effects of 
the magnitudes, locations and number of concentrated masses on nonlinear vibrations were analyzed in detail. 

In the primary resonance case, nonlinear effects result in softening behavior of the curved beam-mass 
system. Such a behavior enables nonlinear frequencies to decrease with amplitude in free-undamped vibrations, 
and those frequency-response curves to bend to the left in the forced-damped vibrations. Softening behavior was 
observed to increase with increasing mass ratios and mass numbers. In this case, the nonlinear frequencies 
decrease, the region of jump phenomena expands, and the maximum amplitudes increase. Same behavior was 
seen in the case of masses being placed to the middle point of the beam instead of ends of the beam.  
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